On Half-integrality of Network Synthesis Problem

Than Nguyen HAU, Hiroshi HIRAI∗, and Nobuyuki TSUCHIMURA†

September, 2012
July, 2013 (version 2)
April, 2014 (version 3)

Abstract

Network synthesis problem is the problem of constructing a minimum cost network satisfying a given flow-requirement. A classical result of Gomory and Hu is that if the cost is uniform and the flow requirement is integer-valued, then there exists a half-integral optimal solution. They also gave a simple algorithm to find a half-integral optimal solution.

In this paper, we show that this half-integrality and the Gomory-Hu algorithm can be extended to a class of fractional cut-covering problems defined by skew-supermodular functions. Application to approximation algorithm is also given.

1 Introduction

Let K_V be a complete undirected graph on node set V. We are given a nonnegative integer-valued flow-requirement $r_{ij} \in \mathbb{Z}_+$ for each unordered pair ij of nodes. A nonnegative edge-capacity $x : E(K_V) \rightarrow \mathbb{R}_+$ is said to be feasible if, for every node-pair ij, the maximum value of an (i,j)-flow under the capacity x is at least r_{ij}. We are also given a nonnegative edge-cost $a : E(K_V) \rightarrow \mathbb{R}_+$. The network synthesis problem (NSP) is the problem of finding a feasible edge-capacity of the minimum cost, where the cost of edge-capacity x is defined as $\sum_{e \in E(K_V)} a(e)x(e)$.

A classical result by Gomory and Hu [10] is that NSP admits a half-integral optimal solution provided the edge-cost is uniform.

Theorem 1.1 ([10]). Suppose $a(e) = 1$ for $e \in E(K_V)$. Then we have the following:

(1) The optimal value of NSP is equal to $\frac{1}{2} \sum_{i \in V} \max\{r_{ij} \mid j \in V \setminus \{i\}\}$.

(2) There exists a half-integral optimal solution in NSP.

See [5, Chapter 4], [7, Section 7.2.3], and [21, Section 62.3]. Gomory and Hu [10] presented the following simple algorithm to find a half-integral optimal solution, where 1_Y denotes the incidence vector of a set Y:

1. Define an edge-weight r on K_V by $r(ij) := r_{ij}$.

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan. E-mail: hirai@mist.i.u-tokyo.ac.jp

†Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Hyogo, 669-1337, Japan. E-mail: tutimura@kwansei.ac.jp
2. Compute a maximum weight spanning tree T of K_V with respect to r. This tree is called a dominant requirement tree.

3. Restrict r to $E(T)$. Decompose r into $r = \sum_{F \in \mathcal{G}} \sigma(F)1_{E(F)}$ for a family \mathcal{G} of subtrees in T and a positive integral weight σ on \mathcal{G} such that

\[(*) \text{ for } F, F' \in \mathcal{G}, \text{ one of } F, F' \text{ is a subgraph of the other, or } F \text{ and } F' \text{ are vertex-disjoint.} \]

4. For $F \in \mathcal{G}$, take a cycle C_F (in K_V) of vertices $V(F)$.

5. Define $x : E(K_V) \to \mathbb{R}_+$ by

\[
x := \sum_{F \in \mathcal{G} : |V(F)| = 2} \sigma(F)1_{E(C_F)} + \frac{1}{2} \sum_{F \in \mathcal{G} : |V(F)| > 2} \sigma(F)1_{E(C_F)}.
\]

Then x is an optimal solution of NSP with unit edge-cost.

The running time of this algorithm is $O(n^2)$; see [16, Chapter 12]. For general edge-costs, this half-integrality fails, and, in subsequent paper [11], Gomory and Hu presented a practically efficient algorithm for NSP by the column generation method applied to an LP-formulation of an exponential size (though NSP has an LP-formulation of a polynomial size; see [21, p. 1054]).

Let us introduce a well-studied class of exponential-size linear problems capturing NSP. Let $f : 2^V \to \mathbb{Z}_+$ be a symmetric nonnegative integer-valued set function on V satisfying $f(\emptyset) = f(V) = 0$, where a set function f is called symmetric if it satisfies

\[
f(X) = f(V \setminus X) \quad (X \subseteq V). \tag{1.1}
\]

For $X \subseteq V$, let δX denote the set of edges in K_V connecting X and $V \setminus X$. Let $\text{Cover}(f)$ denote the set of nonnegative edge-capacities $x : E(K_V) \to \mathbb{R}_+$ satisfying the cut-covering constraint $\sum_{e \in \delta X} x(e) \geq f(X)$ for each $X \subseteq V$. Namely,

\[
\text{Cover}(f) := \left\{ x \in \mathbb{R}_+^{E(K_V)} \mid \sum_{e \in \delta X} x(e) \geq f(X) \quad (X \subseteq V) \right\}. \tag{1.2}
\]

As above, we are given an edge-cost $a : E(K_V) \to \mathbb{R}_+$. Consider the following minimum-cost fractional cut-covering problem:

\[
\text{NSP}[f]: \quad \text{Min.} \sum_{e \in E(K_V)} a(e)x(e) \quad \text{s.t.} \quad x \in \text{Cover}(f).
\]

A number of combinatorial optimization problem can be formulated in this way (see the next section). In particular, NSP is a special case of NSP$[f]$. Indeed, for flow-requirement r_{ij}, define R by

\[
R(X) := \max\{r_{ij} \mid i \in X \neq j\} \quad (\emptyset \neq X \subset V), \quad R(\emptyset) = R(V) = 0. \tag{1.3}
\]

and $R(\emptyset) = R(V) = 0$. By the max-flow min-cut theorem, NSP$[R]$ coincides with NSP.

Our main result is about a half-integrality property of NSP$[f]$ for a special skew-supermodular function f and a special edge-cost a, extending Theorem 1.1. Recall that a symmetric set function f is said to be skew-supermodular if it satisfies

\[
f(X) + f(Y) \leq \max\{f(X \cap Y) + f(X \cup Y), f(X \setminus Y) + f(Y \setminus X)\} \quad (X, Y \subseteq V). \tag{1.4}
\]
The skew-supermodularity has played important roles in optimizations over Cover(f); see the next section. Observe that the inequality (1.4) for a disjoint pair is trivial. We introduce a new property imposed on disjoint pairs. A skew-supermodular function f is said to be normal if it satisfies

$$f(X) + f(Y) - f(X \cup Y) \geq 0 \quad (X, Y \subseteq V : X \cap Y = \emptyset),$$

and is said to be evenly-normal if it satisfies

$$f(X) + f(Y) - f(X \cup Y) \in 2\mathbb{Z}_+ \quad (X, Y \subseteq V : X \cap Y = \emptyset).$$

Next we consider special edge-costs. An edge-cost a is called a tree metric if a is represented by the distances between a subset of vertices in a weighted tree. It is well-known that a is a tree metric if and only if there exists a pair (\mathcal{F}, l) of a cross-free family $\mathcal{F} \subseteq 2^V$ and a nonnegative weight l on \mathcal{F} such that $a = \sum_{X \in \mathcal{F}} l(X)1_{\delta_X}$; see [3]. Recall that a family $\mathcal{F} \subseteq 2^V$ is said to be cross-free if for every $X, Y \in \mathcal{F}$ one of $X \cap Y$, $V \setminus (X \cup Y)$, $X \setminus Y$, and $Y \setminus X$ is empty. The main result of this paper is the following.

Theorem 1.2. Suppose that f is evenly-normal skew-supermodular and a is a tree metric represented as $a = \sum_{X \in \mathcal{F}} l(X)1_{\delta_X}$ for a cross-free family \mathcal{F} and a nonnegative weight $l : \mathcal{F} \to \mathbb{R}_+$. Then we have the following:

1. The optimal value of $\text{NSP}[f]$ is equal to $\sum_{X \in \mathcal{F}} l(X)f(X)$.
2. There exists an integral optimal solution in $\text{NSP}[f]$.

Furthermore there exists an $O(n\theta + n^2)$ algorithm to find an integral optimal solution in $\text{NSP}[f]$, where $n := |V|$ and θ is the running time of evaluating f.

This theorem includes the half-integrality for $\text{NSP}[f]$ for a normal skew-supermodular function f. One can see this fact from: (1) if f is normal skew-supermodular, then $2f$ is evenly-normal skew-supermodular, and (2) if x is optimal to $\text{NSP}[2f]$, then $x/2$ is optimal to $\text{NSP}[f]$. Also Theorem 1.2 includes Theorem 1.1. Indeed, it is easy to see that R is normal skew-supermodular (the skew-supermodularity of R is well-known [7, Lemma 8.1.9]). Since the unit cost is represented as $\sum_{i \in V}(1/2)1_{\delta(i)}$, we can take $\{(i) \mid i \in V\}$ as \mathcal{F}, with $l(\{i\}) := 1/2$ ($i \in V$). Applying Theorem 1.2 to $\text{NSP}[2R]$, we obtain Theorem 1.1. Note that R is evaluated in $O(n)$ time; $R(X)$ is equal to $\max \{r_{ij} \mid ij \in E(T), i \in X \neq j\}$ for a dominant requirement tree T. Therefore the running time of our algorithm is $O(n^2)$; our algorithm in fact generalizes the Gomory-Hu algorithm. Also there are many $O(n^2)$ algorithms to determine whether a is a tree metric and to obtain an expression $a = \sum_{X \in \mathcal{F}} l(X)1_{\delta_X}$; Neighbor-Joining [20] is a popular method.

The rest of this paper is organized as follows. In the next section (Section 2), we discuss the relevance to previous works on skew-supermodular survivable network design. We also present applications of Theorem 1.2 to approximation algorithms, though our original motivation was to understand the half-integrality property and the Gomory-Hu algorithm of NSP from a set-function property of f. In Section 3, we give a proof of Theorem 1.2.

2 Related work and application

Related work. Integer linear optimization over Cover(f) with capacity bound constraint $l \leq x \leq u$, denoted by $\text{SND}[f; l, u]$, is a general form of the survivable network design problem, and can formulate various combinatorial optimization problems; see [17,
Chapter 20] and references therein. The natural LP-relaxation of \(\text{SND}[f; l, u] \) is denoted by \(\text{SND}^*[f; l, u] \). In particular \(\text{SND}^*[f; 0, +\infty] \) is equal to \(\text{NSP}[f] \). The integer network synthesis \(\text{SND}[f; 0, +\infty] \) is denoted by \(\text{INSP}[f] \).

Let us mention examples as well as relevances to our result. For \(T \subseteq V \) with \(|T| \) even, define a set function \(f_T \) by \(f_T(X) := 1 \) for \(X \subseteq V \) with \(|X \cap T| \) odd and \(f_T(X) := 0 \) for others. Then \(\text{INSP}[f_T] \) is the minimum-cost \(T \)-join problem (with nonnegative costs). The Edmonds-Johnson theorem [12] says that the LP-relaxation \(\text{NSP}[f_T] \) is exact. Namely the integrality holds for \(\text{NSP}[f_T] \) with every cost function \(a \). This set function \(f_T \) is evenly-normal skew-supermodular. Our theorem asserts the integrality only for tree-metric edge-costs, and that an optimal \(T \)-join can be greedily found in this case.

For a positive integer \(k > 0 \), define a normal skew-supermodular function \(f_k \) by \(f_k(X) := k \) (\(\emptyset \neq X \neq V \)). If \(k \) is even, then \(f_k \) is evenly-normal. Then \(\text{INSP}[f_k] \) is the minimum \(k \)-edge-connected subgraph problem. In particular, \(\text{INSP}[f_2] \) with the degree constraint is nothing but the traveling salesman problem. Suppose that \(a \) is a metric. Then \(\text{NSP}[f_2] \) is equivalent to the subtour elimination LP-relaxation of TSP; see [25, 23.12]. Suppose further that \(a \) is a tree metric. TSP on a tree is quite easy. An optimal tour is a tour which traces each edge in the tree (at most) twice. This tour in fact coincides with our integral optimal solution in Theorem 1.2.

Consider the case \(f = R \) for connectivity requirement \(\{r_{ij}\} \) (see (1.3)). Then \(\text{SND}[R; l, +\infty] \) is the connectivity augmentation problem. Frank [6] gave a polynomial time algorithm to \(\text{SND}[R; l, +\infty] \) for node-induced edge-costs. An edge-cost \(a \) is called node-induced if there is \(b : V \rightarrow \mathbb{R}_+ \) with

\[
 a(ij) = b(i) + b(j) \quad (i, j \in V).
\]

As a corollary, he proved the half-integrality of \(\text{SND}^*[R; l, +\infty] \) for node-induced edge-costs. Actually Frank’s argument works for a proper function [17, Definition 20.17], which is a symmetric set function \(f \) satisfying

\[
(2.1) \quad \max\{f(X), f(Y)\} \geq f(X \cup Y) \quad (X, Y \subseteq V : X \cap Y = \emptyset).
\]

See [2] for details. Notice that \(R \) is proper. The condition (2.1) is stronger than the normality condition (1.5), and is stronger than the skew-supermodularity (1.4); see [17, Proposition 20.18]. Observe that a node-induced cost function is a tree metric corresponding to a star. So our result extends Frank’s half-integrality result in the case of \(l = 0 \). Note that Frank’s argument is based on the edge-splitting technique, and does not explain the simplicity of the Gomory-Hu algorithm. Note also that our theorem is not applicable to \(\text{SND}^*[R; l, +\infty] \) (since the negative of cut function \((X \mapsto \sum_{e \in \delta X} l(e)) \) is not normal in general).

In the study of hypergraph connectivity augmentation, Szigeti [23] showed that for an arbitrary skew-supermodular function \(f \) there is a half-integral optimal solution in \(\text{NSP}[f] \) with uniform-cost. His proof is also based on the edge-splitting. We do not know how to find this half-integral solution in polynomial time, since the edge-splitting approach needs to check whether a given \(x \in \mathbb{R}^E(K_V) \) belongs to \(\text{Cover}(f) \); see the argument below.

Approximation algorithm of \(\text{SND}[f; l, u] \) for proper/skew-supermodular functions \(f \) has also been extensively studied; see [25, Chapters 22, 23] and [17, Section 20.3]. The integer network synthesis \(\text{INSP}[R] \) is NP-hard for general edge-cost. The skew-supermodular \(\text{INSP}[f] \) is NP-hard even if the edge-cost is uniform, since it includes an NP-hard subclass of the NA-connectivity augmentation problem [18]; see [14, Lemma
There are two major approximation algorithms for $\text{SND}[f; l, u]$; Jain’s 2-approximation algorithm [15] and the primal-dual $2H(f_{\text{max}})$-approximation algorithm [9], where $f_{\text{max}} := \max_{X \subseteq V} f(X)$ and $H(k) := 1 + 1/2 + \cdots + 1/k$. The half-integrality of $\text{SND}^*[f; l, u]$ would yield a 2-approximation algorithm for $\text{SND}[f; l, u]$. However $\text{SND}^*[f; l, u]$ does not have the half-integrality in general; see [25, Lemma 23.2] and [17, p. 544–545]. In [15], Jain discovered a weaker property that every basic solution x of $\text{SND}^*[f; l, u]$ has an edge e with $x(e) \geq 1/2$. Based on this property, he devised a 2-approximation algorithm for $\text{SND}[f; l, u]$, provided a separation oracle of $\text{Cover}(f)$, an oracle of checking whether a given x belongs to $\text{Cover}(f)$. Another notable result is a $7/4$-approximation algorithm by Nutov [19] for $\text{SND}[f; l, +\infty]$ with uniform edge-cost. His algorithm also needs a feasibility-checking oracle of $\text{Cover}(f)$. For a proper function f (given by an oracle), there is an efficient separation algorithm for $\text{Cover}(f)$ [17, Theorem 20.20], and $\text{SND}^*[f; l, u]$ can be solved in polynomial time by the ellipsoid method. In addition, if $f = R$, then the feasibility-check of $\text{Cover}(R)$ can be done by any max-flow min-cut algorithm, and $\text{SND}^*[R; l, u]$ has a polynomial-size LP formulation, which can be solved in polynomial time by the interior point method.

For a general skew-supermodular function f (given by an oracle), however, no efficient feasibility-checking/separation algorithm for $\text{Cover}(f)$ is known; see [17, p. 534]. This problem is reduced to the problem of maximizing a skew-supermodular function, which is also not known to be (oracle-)tractable; see EGRES Open [13]. Even if the normality condition (1.5) is imposed, we still do not know whether $\text{Cover}(f)$ has an efficient separation algorithm, and we do not know whether $\text{NSP}[f]$ is solvable in polynomial time. From this point of view, our result might be interesting since it gives a new class of oracle-tractable $\text{NSP}[f]$.

Application to approximation algorithm. As is well-known, the half-integrality leads to a 2-approximation algorithm; see [25]. For a half-integral optimal solution x of $\text{NSP}[f]$, by rounding up $x(e)$ to $\lceil x(e) \rceil$, we obtain a feasible solution $[x]$ of $\text{INS}P[f]$, which is a 2-approximate solution of $\text{INS}P[f]$.

Theorem 2.1. Suppose that f is a normal skew-supermodular function given by an evaluation oracle. There is a 2-approximation algorithm for $\text{INS}P[f]$ with tree-metric costs.

An interesting point is that this algorithm does not require any feasibility-checking oracle of $\text{Cover}(f)$. Furthermore, by combining Theorem 1.2 with a standard argument of Bartal’s probabilistic embedding [1] (see [24, Section 8.5, 8.6]), we obtain a randomized $O(\log n)$-approximation algorithm for $\text{INS}P[f]$ with general cost as follows. We can assume that edge-cost a is a metric, i.e., it satisfies the triangle inequalities $a(ij) + a(jk) \geq a(ik)$ ($i, j, k \in V$) (see the proof of [25, Theorem 3.2]), and there is no edge e with $a(e) = 0$ (otherwise, contract all edges e with $a(e) = 0$). It is shown by [4] that there exists a randomized $O(n^2)$ algorithm to find a tree metric τ with $a(e) \leq \tau(e)$ and $E[\tau(e)] \leq O(\log n) a(e)$ ($e \in E(K_V)$), where $E[X]$ is the expected value of a random variable X. More precisely, there is an $O(n^2)$ algorithm to sample a tree metric from the space T of tree metrics τ dominating a with respect to a probability measure μ on T satisfying $E[\tau(e)] = \int_{\tau \in T} \tau(e) d\mu \leq O(\log n) a(e)$ ($e \in E(K_V)$). Let x^τ be a half-integral optimal solution x of $\text{NSP}[f]$ for tree-metric cost τ (obtained by the algorithm in Theorem 1.2). The rounding solution $[x^\tau]$ is a 2-approximate solution of $\text{INS}P[f]$ with cost τ (by Theorem 2.1), and has the expected objective value at most $O(\log n)$.
times the optimal value of INSP[f] with cost a, since

\[
E \left[\sum_e a(e) [x^\tau(e)] \right] = \int_{\tau \in T} \sum_e a(e) [x^\tau(e)] d\mu \leq \int_{\tau \in T} \sum_e \tau(e) [x^\tau(e)] d\mu \\
\leq \int_{\tau \in T} 2 \sum_e \tau(e) y^\tau(e) d\mu \leq \int_{\tau \in T} 2 \sum_e \tau(e) y(e) d\mu = 2 \sum_e y(e) \int_{\tau \in T} \tau(e) d\mu \\
\leq O(\log n) \sum_e a(e) y(e),
\]

where \(y^\tau \) and \(y \) denote optimal solutions of INSP[f] with cost \(\tau \) and of INSP[f] with cost \(a \), respectively. The same argument implies that \(E[\sum a(e)x^\tau(e)] \) is at most 3 \(O(\log n) \) times the optimal value of NSP[f] with cost \(a \).

Theorem 2.2. Suppose that \(f \) is a normal skew-supermodular function given by an evaluation oracle. There exists a randomized \(O(\log n) \)-approximation algorithm for NSP[f] and for INSP[f].

Our algorithm for INSP[f] is comparable to the primal-dual \(2H(f_{\text{max}}) \)-approximation algorithm in the case where \(f_{\text{max}} \) is a polynomial of the number \(n \) of nodes, and is of course much inferior than Jain’s algorithm in approximation factor. Also our algorithm is not extendable to SND[f; l, u]. However our algorithm works only with an evaluation oracle of \(f \), and is considerably fast. For the special case of \(f = R \), Jain’s algorithm needs to solve the LP-relaxation SND* in each step. This is quite costly, and almost impossible for a large instance: the running time of Jain’s algorithm is beyond \(O(n^6) \), as estimated in [15, Section 8]. Note also that the running time of the primal-dual approximation algorithm is beyond \(O((f_{\text{max}})^2 n^2) \); see [17, p. 539]. On the other hand, the running time of our algorithm is \(O(n^2) \) per one trial. So our algorithm may also be useful to obtain a good initial feasible solution for local search heuristics, e.g., [22]. An experimental study will be given in a future work.

3 Proof

We need two lemmas. The first lemma is a general property of a symmetric skew-supermodular function. We denote \(\sum_{e \in F} x(e) \) by \(x(F) \) for \(F \subseteq E(K_V) \).

Lemma 3.1. Let \(f : 2^V \to \mathbb{Z}_+ \) be a symmetric skew-supermodular function and \(\mathcal{F} \) a cross-free family on \(V \). If \(x : E(K_V) \to \mathbb{R}_+ \) satisfies \(x(\delta X) = f(X) \) for all \(X \in \mathcal{F} \), then one of the following holds:

1. \(x \) satisfies \(x(\delta X) \geq f(X) \) for all \(X \subseteq V \).
2. There exists \(W \subseteq V \) such that \(x(\delta W) < f(W) \) and \(\mathcal{F} \cup \{W\} \) is cross-free.

In particular, if \(\mathcal{F} \) is a maximal cross-free family, then (1) holds.

Proof. By symmetry, we may assume \(Y \in \mathcal{F} \Leftrightarrow V \setminus Y \in \mathcal{F} \). Suppose that (1) does not hold. Then there is \(Z \subseteq V \) with \(x(\delta Z) < f(Z) \). Take such a \(Z \subseteq V \) such that the crossing number \(N_Z := |\{X \in \mathcal{F} \mid Z \text{ and } X \text{ are crossing}\}| \) is minimum, where \(X \) and \(Y \) are said to be crossing if all \(X \cap Y, V \setminus (X \cup Y), X \setminus Y, \) and \(Y \setminus X \) are nonempty. If \(N_Z = 0 \), we are done. Suppose not. Take \(Y \in \mathcal{F} \) such that \(Z \) and \(Y \) are crossing. By the skew-supermodularity of \(f \), we have

\[
f(Y) + f(Z) \leq f(Y \cap Z) + f(Y \cup Z) \text{ or } f(Y) + f(Z) \leq f(Y \setminus Z) + f(Z \setminus Y).
\]
By symmetry, we may assume the first case; otherwise replace Y by $V \setminus Y$. By $x(\delta Y) = f(Y)$ and $x(\delta Z) < f(Z)$, we have
\[x(\delta Y) + x(\delta Z) < f(Y) + f(Z) \leq f(Y \cap Z) + f(Y \cup Z). \]
By $x \geq 0$, we have $x(\delta (Y \cap Z)) + x(\delta (Y \cup Z)) \leq x(\delta Y) + x(\delta Z)$. Thus $x(\delta (Y \cap Z)) < f(Y \cap Z)$ or $x(\delta (Y \cup Z)) < f(Y \cup Z)$. Again, by symmetry, we may assume $x(\delta (Y \cap Z)) < f(Y \cap Z)$; otherwise replace Y by $V \setminus Y$ and replace Z by $V \setminus Z$.

Then $N_{Y \cap Z} < N_{Z}$ (see [25, Lemma 23.15]), and this contradicts the minimality assumption.

The second lemma is about the path decomposition of a capacitated trivalent tree. A tree is said to be trivalent if each node that is not a leaf has degree three, where a leaf of a tree is a node of degree one.

Lemma 3.2. Let T be a trivalent tree, and $c : E(T) \to \mathbb{Z}_+$ an integer-valued edge-capacity. If $c(e) + c(e') - c(e'') \in 2\mathbb{Z}_+$ holds for every pairwise-incident triple (e, e', e'') of edges, then there exists a pair (\mathcal{P}, λ) of a set \mathcal{P} of simple paths connecting leaves and an integral weight $\lambda : \mathcal{P} \to \mathbb{Z}_+$ such that $\sum_{P \in \mathcal{P}} \lambda(P)1_{E(P)} = c$.

Proof. For every incident pair e, e' of edges, define $l(e, e')$ by
\[l(e, e') := (c(e) + c(e') - c(e''))/2, \]
where e'' is the third edge incident to e and to e'. Then $l(e, e')$ is a nonnegative integer, and $c(e) = l(e, e') + l(e, e'')$. (\mathcal{P}, λ) is constructed as follows.

Let $\mathcal{P} := \emptyset$ initially. Take edge $e = uv$ with $c(e) > 0$. Suppose that u is not a leaf. Then there is an edge e' incident to u with $l(e, e') > 0$. Necessarily $c(e') > 0$ (otherwise $c(e') = 0$ and $l(e, e') = 0$). Hence we can extend e to a simple path $P = (e_0, e_1, \ldots, e_k)$ connecting leaves. Add P to \mathcal{P}. Define $\lambda(P) := \min_{i=1,\ldots,k} l(e_{i-1}, e_i)$ (> 0). Let $\hat{c} := c - \lambda(P)1_{E(P)}$. Then \hat{c} satisfies the condition of this lemma. To see this, take an arbitrary pairwise-incident triple (e, e', e'') of edges. We show $\hat{c}(e) + \hat{c}(e') - \hat{c}(e'') = c(e) + c(e') - c(e'') \in 2\mathbb{Z}_+$. Here $E(P) \cap \{e, e', e''\}$ is \emptyset, $\{e', e''\}$, $\{e, e''\}$, or $\{e, e'\}$. For the first three cases, we have $\hat{c}(e) + \hat{c}(e') - \hat{c}(e'') = c(e) + c(e') - c(e'') \in 2\mathbb{Z}_+$. For the last case, we have $\hat{c}(e) + \hat{c}(e') - \hat{c}(e'') = c(e) + c(e') - c(e'') - 2\lambda(P)$, which must be a nonnegative even integer by definition of $\lambda(P)$.

Let $c \leftarrow \hat{c}$, and repeat this process. In each step, at least one of $l(e, e')$ is zero. After $O(|V(T)|)$ step, we have $c = 0$ and obtain a desired (\mathcal{P}, λ). \hfill \Box

Proof of Theorem 1.2. Consider the LP-dual of NSP$[f]$, which is given by
\[
\text{DualNSP}[f]: \quad \begin{align*}
\text{Max.} \quad & \sum_{X \subseteq V} \pi(X)f(X) \\
\text{s.t.} \quad & \sum_{X \subseteq V} \pi(X)1_{\delta X} \leq a \\
& \pi : 2^V \to \mathbb{R}_+. \end{align*}
\]
Suppose that a is represented by $a = \sum_{X \in \mathcal{F}} l(X)1_{\delta X}$ for some cross-free family \mathcal{F} and some nonnegative weight l on \mathcal{F}. Define $\pi : 2^V \to \mathbb{R}_+$ by
\[
\pi(X) = \begin{cases}
 l(X) & \text{if } X \in \mathcal{F}, \\
 0 & \text{otherwise}, \quad (X \subseteq V).
\end{cases}
\]
Then \(\pi \) is feasible to DualNSP\([f]\) with the objective value \(\sum_{X \in \mathcal{F}} l(X)f(X) \). We are

going to construct a feasible integral solution \(x \) in NSP\([f]\) satisfying

\[
(3.1) \quad x(\delta X) = f(X) \quad (X \in \mathcal{F}).
\]

If this is possible, then, by the complementary slackness, \(x \) is optimal to NSP\([f]\) and \(\pi \) is optimal to DualNSP\([f]\); hence Theorem 1.2 is proved.

Take a maximal cross-free family \(\mathcal{F}^* \) including \(\mathcal{F} \). Here recall the tree-representation of a cross-free family; see [7, Section 1.4] and [21, Section 13.4]. By the maximality of \(\mathcal{F}^* \), there exists a trivalent tree \(T \) on vertex set \(V \cup I \) with the following properties:

\[
(3.2) \quad (1) \ V \text{ is the set of leaves of } T, \text{ and } I \text{ is the set of non-leaf nodes.}
\]

\[
(2) \ \mathcal{F}^* \setminus \{\emptyset, V\} = \bigcup_{e \in E(T)} \{A_e, B_e\}, \text{ where } \{A_e, B_e\} \text{ denotes the bipartition of } V \text{ such that } A_e \text{ (or } B_e) \text{ is the set of leaves of one of components of } T - e.
\]

Define edge-weight \(c : E(T) \to \mathbb{Z}_+ \) by

\[
(3.3) \quad c(e) := f(A_e)(= f(B_e)) \quad (e \in E(T)).
\]

By symmetry (1.1) and the evenly-normal property (1.6) of \(f \), for each pairwise-incident triple \((e, e', e'')\) of edges in \(T \), we have

\[
c(e) + c(e') - c(e'') = f(A_e) + f(A_{e'}) - f(A_{e''}) \in 2\mathbb{Z}_+,
\]

where we can assume \(A_e \cap A_{e'} = \emptyset \) and \(A_{e''} = A_e \cup A_{e'} \). By Lemma 3.2, there exists a pair \((P, \lambda)\) of a set \(P \) of simple paths connecting \(V \) and a positive integral weight \(\lambda \) on \(P \) with \(\sum_{P \in \mathcal{P}} \lambda(P)1_{E(P)} = c \). Define \(x : E(K_V) \to \mathbb{Z}_+ \) by

\[
(3.4) \quad x(ij) := \begin{cases}
\lambda(P) & \text{if } \exists P \in \mathcal{P} : P \text{ connects } i \text{ and } j, \\
0 & \text{otherwise},
\end{cases}
\quad (ij \in E(K_V)).
\]

Since each \(P \) is simple, we have

\[
x(\delta A_e) = c(e) = f(A_e) \quad (e \in E(T)).
\]

By (3.2) (2), this implies

\[
x(\delta X) = f(X) \quad (X \in \mathcal{F}^*).
\]

By Lemma 3.1, \(x \) is feasible to NSP\([f]\). By \(\mathcal{F} \subseteq \mathcal{F}^* \), \(x \) satisfies (3.1). Therefore, \(x \) is an integral optimal solution in NSP\([f]\), \(\pi \) is an optimal solution in DualNSP\([f]\), and the optimal value is equal to \(\sum_{X \in \mathcal{F}} l(X)1_{\delta X} \). \(\square \)

Algorithm to find an integral optimal solution in Theorem 1.2. Our proof gives the following \(O(n\theta + n^2) \) algorithm to find an integral optimal solution, where \(n := |V| \), and \(\theta \) denotes the running time of an oracle of \(f \).

step 1: Take a maximal cross-free family \(\mathcal{F}^* \) including \(\mathcal{F} \).

step 2: Construct a trivalent tree \(T \) with (3.2).

step 3: Define edge-weight \(c \) by (3.3).

step 4: Decompose \(c \) as \(c = \sum_{P \in \mathcal{P}} \lambda(P)1_{E(P)} \) according to the proof of Lemma 3.2.

step 5: Define \(x \) by (3.4), and then \(x \) is an integral optimal solution in NSP\([f]\).

Steps 1,2 can be done in \(O(n) \) time, step 3 can be done by \(O(n) \) calls of \(f \), and steps 4,5 can be done in \(O(n^2) \) time.
Gomory-Hu algorithm reconsidered. The Gomory-Hu algorithm can be viewed as a special case of our algorithm. First note that, in the case of unit cost, we can take an arbitrary maximal cross-free family in step 1. Consider a dominant requirement tree T with respect to r. For $e \in E(T)$, let $\{A_e, B_e\}$ denote the bipartition of V determined by $T - e$. Then $\mathcal{F} := \bigcup_{e \in E(T)} \{A_e, B_e\}$ is cross-free. Extend \mathcal{F} to a maximal cross-free family \mathcal{F}^*. Take a trivalent tree \bar{T} corresponding to \mathcal{F}^*. Define $c : E(\bar{T}) \to \mathbb{Z}_+$ by (3.3) with $f := R$. Recall that R is proper, i.e., it satisfies (2.1). By symmetry, the maximum of $R(A)$, $R(B)$, and $R(A \cup B)$ is attained at least twice. This implies the following property of c:

\begin{equation}
(3.5) \quad \text{For each pairwise-incident triple } (e, e', e'') \text{ of edges, the maximum of } c(e), c(e'), \text{ and } c(e'') \text{ is attained at least twice.}
\end{equation}

Decompose c as $c = \sum_{F \in \mathcal{G}} \sigma(F)1_{E(F)}$ for a family of subtrees \mathcal{G} and a positive integral weight σ on \mathcal{G} with the property (\ast) in the step 3 of the Gomory-Hu algorithm. By (3.5), the set of leaves of each subtree $F \in \mathcal{G}$ belongs to V. Therefore we may apply the path decomposition in Lemma 3.2 to each $\sigma(F)1_{E(F)}$ independently. From the path decomposition of $\sigma(F)1_{E(F)}$, define x_F by $x_F := (\sigma(F)/2)1_{E(C_F)}$ if $|V(F)| \geq 3$ and $x_F := \sigma(F)1_{E(C_F)}$ if $|V(F)| = 2$, where a cycle C_F of vertices $V(F)$ in K_V. Then $x := \sum_{F \in \mathcal{G}} x_F$ is optimal.

By construction, T can be regarded as a tree obtained by contracting some of edges of \bar{T}. So we can regard $E(T)$ as $E(\bar{T}) \subseteq E(T)$. Since T is a maximum spanning tree, we have

\[r(e) = R(A_e)(= R(B_e)) \quad (e \in E(T)). \]

This means that r coincides with the restriction of c to $E(T)$. Also one can see from the definition of R that the family obtained from \mathcal{G} by contracting the edges coincides with the family \mathcal{G} in the Gomory-Hu algorithm (see Introduction). Therefore, the above-mentioned process coincides with the Gomory-Hu algorithm.

Remark 3.3. Lemma 3.1 is viewed as a symmetric analogue of the following well-property of submodular functions: If f is a submodular function on V and $x : V \to \mathbb{R}$ satisfies $x(Y) = f(Y)$ ($Y \in \mathcal{F}$) for some maximal chain \mathcal{F} in 2^V, then $x(X) \leq f(X)$ for all $X \subseteq V$. See [7, 8, 21]. This property guarantees the correctness of the greedy algorithm for the base polytope. Also in our algorithm, Lemma 3.1 is used for a similar purpose. So our algorithm may be a symmetric analogue of the greedy algorithm.

Acknowledgments

We thank referees for helpful comments; the proof of Lemma 3.1 was simplified by a suggestion of a referee. We learned some of bibliographical information from the lectures given by Toshimasa Ishii at July 2013. The second author is partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and is partially supported by Aihara Project, the FIRST program from JSPS.

References

