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Abstract

This paper surveys mathematical properties of (layered-) mixed matrices with
emphasis on irreducibility and block-triangular decomposition. A matrix A is a
mixed matrix if A = Q + T , where Q is a “constant” matrix and T is a “generic”
matrix (or formal incidence matrix) in the sense that the nonzero entries of T are
algebraically independent parameters. A layered mixed (or LM-) matrix is a mixed
matrix such that Q and T have disjoint nonzero rows, i.e., no row of A = Q + T
has both a nonzero entry from Q and a nonzero entry from T . The irreducibility
for an LM-matrix is defined with respect to a natural admissible transformation
as an extension of the well-known concept of full indecomposability for a generic
matrix. Major results for fully indecomposable generic matrices such as Frobenius’
characterization in terms of the irreducibility of determinant are generalized. As for
block-triangularization, the Dulmage-Mendelsohn decomposition is generalized to
the combinatorial canonical form (CCF) of an LM-matrix along with the uniqueness
and the algorithm. Matroid-theoretic methods are useful for investigating a mixed
matrix.
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1 Introduction

The notion of a mixed matrix was introduced by Murota-Iri [40] as a mathematical tool
for systems analysis by means of matroid-theoretic combinatorial methods. A matrix
A is called a mixed matrix if A = Q + T , where Q is a “constant” matrix and T is a
“generic” matrix (or formal incidence matrix) in the sense that the nonzero entries of
T are algebraically independent [52] parameters (see below for the precise definition).
A layered mixed (or LM-) matrix is defined (see below) as a mixed matrix such that Q
and T have disjoint nonzero rows, i.e., no row of A = Q + T has both a nonzero entry
from Q and a nonzero entry from T .

The notion of a mixed matrix is motivated by the following physical observation.
When we describe a physical system (such as an electrical network, a chemical plant) in
terms of elementary variables, we can often distinguish following two kinds of numbers,
together characterizing the physical system.

Inaccurate Numbers: Numbers representing independent physical parameters such as
masses in mechanical systems and resistances in electrical networks. Such numbers
are contaminated with noise and other errors and take values independent of one
another; therefore they can be modeled as algebraically independent numbers, and

Accurate Numbers: Numbers accounting for various sorts of conservation laws such
as Kirchhoff’s laws. Such numbers stem from topological incidence relations and
are precise in value (often ±1); therefore they cause no serious numerical difficulty
in arithmetic operations on them.

The “inaccurate numbers” constitute the matrix T whereas the “accurate numbers” the
matrix Q. We may also refer to the numbers of the first kind as “system parameters”
and to those of the second kind as “fixed constants”. In this paper we do not discuss
physical/engineering significance of a mixed matrix, but concentrate on its mathemat-
ical properties. See [25], [27], [28], [30], [31], [37], [38], [39], [40], [42] for engineering
applications of mixed matrices; and Chen [6], Iri [18], Recski [46], Yamada-Foulds [56]
for graph/matroid theoretic methods for systems analysis.

Here is a preview of some nice properties enjoyed by a mixed matrix or an LM-matrix.

• The rank is expressed as the minimum of a submodular function (Theorem 5) and
can be computed efficiently by a matroid-theoretic algorithm.

• A notion of irreducibility is defined with respect to a natural transformation of
physical significance. The irreducibility for an LM-matrix is an extension of the
well-known concept of full indecomposability for a generic matrix.

• An irreducible component thus defined satisfies a number of nice properties that
justify the name of irreducibility (Theorems 10, 11, 12, 13). Many results for a fully
indecomposable generic matrix are extended, including Frobenius’ characterization
in terms of the irreducibility of determinant.

• There exists a unique canonical block-triangular decomposition, called the com-
binatorial canonical form (CCF for short), into irreducible components (Theorem
6). This is a generalization of the Dulmage-Mendelsohn decomposition. The CCF
can be computed by an efficient algorithm (see §6).
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We now give the precise definitions of mixed matrix, layered mixed matrix and
admissible transformation for a layered mixed matrix. For a matrix A, the row set
and the column set of A are denoted by Row(A) and Col(A). For I ⊆ Row(A) and
J ⊆ Col(A), A[I, J ] = (Aij | i ∈ I, j ∈ J) means the submatrix of A with row set I and
column set J . The rank of A is written as rankA.

Let K be a subfield of a field F . An m×n matrix A over F (i.e., Aij ∈ F ) is called
a mixed matrix with respect to F /K if

A = Q + T, (1)

where

(M1) Q is an m× n matrix over K (i.e., Qij ∈ K ), and

(M2) T is an m×n matrix over F (i.e., Tij ∈ F ) such that the set of its nonzero entries
is algebraically independent [52] over K .

The subfield K will be called the base field.
A mixed matrix A of (1) is called a layered mixed matrix (or an LM-matrix) with

respect to F /K if the nonzero rows of Q and T are disjoint. In other words, A is an
LM-matrix, denoted as A ∈ LM(F /K ) = LM(F /K ; mQ,mT , n), if it can be put into
the following form with a permutation of rows:

A =
(

Q
T

)
=

(
Q
O

)
+

(
O
T

)
, (2)

where

(L1) Q is an mQ × n matrix over K (i.e., Qij ∈ K ), and

(L2) T is an mT × n matrix over F (i.e., Tij ∈ F ) such that the set T of its nonzero
entries is algebraically independent over K .

Though an LM-matrix is, by definition, a special case of mixed matrix, the following
argument would indicate that the class of LM-matrices is as general as the class of mixed
matrices both in theory and in application. Consider a system of equations Ax = b
described with an m×n mixed matrix A = Q+T . By introducing an auxiliary variable
w ∈ F m we can rewrite the equation as

Ã

(
w
x

)
=

(
b
0

)

with a (2m)× (m + n) LM-matrix

Ã =
(

Q̃
T̃

)
=

(
Im Q

−diag [t1, . . . , tm] T ′

)
, (3)

where diag [t1, . . . , tm] is a diagonal matrix with “new” variables t1, . . . , tm(∈ F ), and
T ′ij = tiTij . Note that rank Ã = rankA + m.
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Example 1 An equation described with a mixed matrix:
(

2 + α 3
β 4 + γ

) (
x1

x2

)
=

(
b1

b2

)
,

where T = {α, β, γ} is algebraically independent, can be rewritten as



1 0 2 3
0 1 0 4
−t1 0 t1α 0
0 −t2 t2β t2γ







w1

w2

x1

x2


 =




b1

b2

0
0




by means of an LM-matrix. 2

For an LM-matrix A ∈ LM(F /K ;mQ,mT , n) of (2) we define an admissible trans-
formation to be a transformation of the form:

Pr

(
S O
O I

) (
Q
T

)
Pc, (4)

where Pr and Pc are permutation matrices, and S is a nonsingular matrix over the base
field K (i.e., S ∈ GL(mQ,K )).

An admissible transformation brings an LM-matrix into another LM-matrix and two
LM-matrices are said to be LM-equivalent if they are connected by an admissible trans-
formation. If A′ is LM-equivalent to A, then Col(A′) may be identified with Col(A)
through the permutation Pc. Examples 2, 3 below illustrate the admissible transforma-
tion.

With respect to the admissible transformation (4) we can define the notion of irre-
ducibility for LM-matrices, which is an extension of the well-studied concept of full inde-
composability [5], [49]. First recall that a matrix A′ is said to be partially decomposable
if it contains a zero submatrix A′[I, J ] = O with |I| + |J | = max(|Row(A′)|, |Col(A′)|);
otherwise, it is called fully indecomposable. An LM-matrix A ∈ LM(F /K ; mQ,mT , n)
is defined to be LM-reducible if it can be decomposed into smaller submatrices by means
of the admissible transformation, or more precisely, if there exists a partially decompos-
able matrix A′ which is LM-equivalent to A. On the other hand, A will be called
LM-irreducible if it is not LM-reducible, that is, if any LM-matrix A′ equivalent to A
is fully indecomposable. Hence, if A is LM-irreducible, then it is fully indecomposable;
but not conversely. By convention A is regarded as LM-irreducible if Row(A) = ∅ or
Col(A) = ∅.

Let us consider the special case where mQ = 0. Then A = T and hence all the
nonzero entries are algebraically independent. Such a matrix is called a generic ma-
trix in Brualdi-Ryser [5]. The admissible transformation (4) reduces to Ā = PrAPc,
involving permutations only, and the LM-irreducibility is nothing but the full indecom-
posability. It is known that a fully indecomposable generic matrix enjoys a number of
interesting properties. On the other hand, if a matrix is not fully indecomposable, it
can be decomposed uniquely into fully indecomposable components. This is called the
Dulmage-Mendelsohn decomposition, or the DM-decomposition for short. See [4], [5],
[8], [21], [28], [33], [37] for more about the DM-decomposition.

In this paper we are mainly interested in whether these results for a generic matrix
can be extended to a general LM-matrix. It will be shown that many major results for a
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fully indecomposable generic matrix are extended for an LM-irreducible matrix, and the
DM-decomposition is extended to a canonical block-triangular decomposition under the
admissible transformation (4). The canonical form is called the combinatorial canonical
form (CCF) of an LM-matrix, which is illustrated in the following examples, whereas a
precise description of the CCF will be given as Theorem 6 in §3.

Example 2 Consider a 3× 3 LM-matrix

A =
(

Q
T

)
=




1 1 0
1 2 3
0 t1 t2




with
Q =

(
1 1 0
1 2 3

)
, T = ( 0 t1 t2 ) ,

where T = {t1, t2} is the set of algebraically independent parameters. This matrix is
fully indecomposable (DM-irreducible) and cannot be decomposed into smaller blocks by

means of permutations of rows and columns. By choosing S =
(

1 0
−1 1

)
and Pr = Pc =

I in the admissible transformation (4), we can obtain a block-triangular decomposition:

Ā =
(

SQ
T

)
=




1 1 0
1 3
t1 t2


 .

Thus the admissible transformation is more powerful than mere permutations. 2

Example 3 Consider an LM-matrix A =
(

Q
T

)
of (2) defined by

Q =




ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5

0 0 1 1 1 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −1 1
0 0 0 0 0 0 1 1 −1 0




,

T =




ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5

r1 0 0 0 0 t1 0 0 0 0
0 r2 0 0 0 0 t2 0 0 0
0 0 0 0 0 α 0 t3 0 0
0 β 0 t4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 t5




,

where T = {r1, r2, α, β; t1, · · · , t5} is the set of algebraically independent parameters.
(See Example 16.2 in [28] for the physical meaning of this example.)

The combinatorial canonical form (CCF), i.e., the finest block-triangular form under
the admissible transformation (4) is obtained as follows. Choosing

S =




0 −1 0 0 0
0 0 −1 0 0
1 1 1 0 0
0 0 0 −1 0
0 0 0 −1 1



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in (4) we first transform Q to

Q′ = SQ =




ξ1 ξ2 ξ3 ξ4 ξ5 η1 η2 η3 η4 η5

−1 0 0 0 1 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 1 −1
0 0 0 0 0 −1 1 1 0 −1




,

and then permute the rows and the columns of
(

Q′

T

)
with permutation matrices

Pr =




0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




,

Pc =




0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1




to obtain an explicit block-triangular LM-matrix

Ā = Pr

(
Q′

T

)
Pc =




ξ3 ξ5 η4 ξ1 ξ2 ξ4 η1 η2 η3 η5

1 −1
1 −1

1 −1 −1
1 1 1 0 0 0
0 0 0 −1 1 1 −1
r1 0 0 t1 0 0
0 r2 0 0 t2 0
0 0 0 α 0 t3
0 β t4 0 0 0

t5




.

This is the CCF of A, namely, the finest block-triangular matrix which is LM-equivalent
to A. Hence A is LM-reducible whereas each diagonal block of Ā is LM-irreducible. The
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columns of Ā are partitioned into five blocks:

C1 = {ξ3}, C2 = {ξ5}, C3 = {η4}, C4 = {ξ1, ξ2, ξ4, η1, η2, η3}, C5 = {η5}.

The zero/nonzero structure of Ā determines the following partial order among the blocks:

C5

↑
C4

↗ ↑ ↖
C1 C2 C3

This partial order indicates, for example, that the blocks C1 and C2, having no order
relation, could be exchanged in position without destroying the block-triangular form
provided the corresponding rows are exchanged in position accordingly. This corresponds
to the fact that the entry in the first row of the column ξ5 is equal to 0. A precise
description of the CCF and a combinatorial characterization of the partial order will be
given in Theorem 6 in §3. The transformation matrices S, Pr and Pc can be found by
the algorithm described in §6. 2
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2 Rank

In this section we consider combinatorial characterizations of the rank of an LM-matrix
A = (Q

T ) ∈ LM(F /K ). We put C = Col(A), R = Row(A), RQ = Row(Q) and
RT = Row(T ); then Col(Q) = Col(T ) = C, and R = RQ ∪RT .

Before dealing with a general LM-matrix, let us consider the special case of a generic
matrix, i.e., where A = T (with mQ = 0) and hence all the nonzero entries are alge-
braically independent over K . The zero/nonzero structure of T can be conveniently rep-
resented by a bipartite graph G(T ) = (Row(T ), Col(T ), T ), which has Row(T )∪Col(T )
as the vertex set and T (=set of nonzero entries of T ) as the arc set. The term-rank
of T , denoted as term-rankT , is equal to the maximum size of a matching in G(T ). In
other words, term-rankT is the maximum size of a square submatrix T [I, J ] such that
there exists a one-to-one correspondence π : I → J with Tiπ(i) 6= 0 (∀i ∈ I):

term-rankT = max{|I| | ∃π(one-to-one) : I → J, ∀i ∈ I : Tiπ(i) 6= 0}.

The following fact is well known [5], [10]. See Lemma 3 below for the proof.

Lemma 1 For a generic matrix T , which has algebraically independent nonzero entries,
we have

rankT = term-rankT.

2

The zero/nonzero structure of T is represented by the functions τ, γ : 2RT ×2C → Z
defined as

τ(I, J) = term-rankT [I, J ], I ⊆ RT , J ⊆ C, (5)
Γ(I, J) =

⋃

j∈J

{i ∈ I | Tij 6= 0}, I ⊆ RT , J ⊆ C, (6)

γ(I, J) = |Γ(I, J)|, I ⊆ RT , J ⊆ C. (7)

Lemma 1 shows that τ(I, J) = rankT [I, J ], whereas Γ(I, J) stands for the set of nonzero
rows of the submatrix T [I, J ], and γ(I, J) for the number of nonzero rows of T [I, J ].

These functions τ , γ enjoy bisubmodularity, that is, they each satisfy an inequality
of the following type:

f(I1 ∪ I2, J1 ∩ J2) + f(I1 ∩ I2, J1 ∪ J2) ≤ f(I1, J1) + f(I2, J2). (8)

For a bisubmodular function f in general, fI ≡ f(I, ·) : 2C → Z, for each I, is a
submodular function:

fI(J1 ∩ J2) + fI(J1 ∪ J2) ≤ fI(J1) + fI(J2), Ji ⊆ C (i = 1, 2). (9)

The following fact is a version of the fundamental minimax relation concerning the
maximum matchings and the minimum covers of a bipartite graph, which is often asso-
ciated with J. Egerváry, G. Frobenius, D. König, P. Hall, R. Rado, O. Ore, and others
[5], [20], [21], [53]. Note also that the function γ(I, J) − |J | (with I fixed) is called the
surplus function in Lovász-Plummer [21].
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Lemma 2 For τ and γ defined by (5) and (7),

τ(I, J) = min{γ(I, J ′)− |J ′| | J ′ ⊆ J}+ |J |, I ⊆ RT , J ⊆ C.

2

We are now in the position to consider the rank of a general LM-matrix. The
following lemma is a fundamental identity for an LM-matrix, an extension of Lemma
1 for a generic matrix. It will be translated first into a matroid-theoretic expression
in Lemma 4, and then, with the aid of the matroid partition theorem, turned into the
important minimax formulas in Theorem 5.

Lemma 3 For A ∈ LM(F /K ),

rankA = max{rankQ[RQ, J ] + term-rankT [RT , C − J ] | J ⊆ C}. (10)

(Proof) First assume that A is square and consider the (generalized) Laplace expansion
[16]:

det A =
∑

J⊆C

±det Q[RQ, J ] · detT [RT , C − J ].

If detA 6= 0, then both Q[RQ, J ] and T [RT , C − J ] are nonsingular for some J . The
algebraic independence of T ensures the converse. This shows (10) for a square A. For
a nonsquare matrix A, the same argument applies to its square submatrices. 2

For the matrix A of Example 3, we may take J = {ξ5, ξ3, ξ4, η4, η3} for the subset that
attains the maximum (=10) on the right-hand side of (10). Therefore A is nonsingular.

Let us introduce some matroid-theoretic concepts to recast the identity in Lemma 3.
Put F = {J ⊆ C | rankA[R, J ] = |J |}, which denotes the family of linearly independent
columns of A. As is easily verified, the family F satisfies the following three conditions:

(i) ∅ ∈ F ,

(ii) J1 ⊆ J2 ∈ F ⇒ J1 ∈ F ,

(iii) J1 ∈ F , J2 ∈ F , |J1| < |J2| ⇒ J1 ∪ {j} ∈ F for some j ∈ J2 − J1.

In general, a pair M = (C,F) of a finite set C and a family F of subsets of C is called
a matroid if it satisfies the three conditions above. C is called the ground set and F the
family of independent sets. A maximal member (with respect to set inclusion) in F is
called a base, and, by condition (ii), F is determined by the family B of bases. The size
of a base is uniquely determined, which is called the rank of M, denoted as rankM; i.e.,
rankM = |B| = max{|J | | J ∈ F} for B ∈ B. Given two matroids M1 = (C,F1) and
M2 = (C,F2) with the same ground set C, another matroid, denoted as (C,F1 ∨ F2),
is defined by

F1 ∨ F2 = {J1 ∪ J2 | J1 ∈ F1, J2 ∈ F2}.
This is called the union of M1 and M2, and denoted as M1 ∨M2. See [15], [20], [53],
[54], [55] for more about matroids.

For an LM-matrix A = (Q
T ) ∈ LM(F /K ) we consider the matroids M(A), M(Q),

M(T ) on C defined respectively by matrices A, Q, T with respect to the linear inde-
pendence among column vectors. Then Lemma 3 is rewritten as follows.
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Lemma 4 For A = (Q
T ) ∈ LM(F /K ), we have M(A) = M(Q) ∨M(T ). 2

This theorem makes it possible to compute the rank of an LM-matrix with O(n3 log n)
arithmetic operations (assuming m = O(n) for simplicity) in the base field K by utilizing
an established algorithm for matroid partition/union problem ([7], [9], [11], [15], [20],
[53], [54], [55]). See the algorithm in §6.

As an extension of the surplus function for a generic matrix (cf. Lemma 2) we
introduce a set function p : 2R × 2C → Z as follows. For A ∈ LM(F /K ) we define p by

p(I, J) = ρ(I ∩RQ, J) + γ(I ∩RT , J)− |J |, I ⊆ R, J ⊆ C, (11)

where
ρ(I, J) = rankQ[I, J ], I ⊆ RQ, J ⊆ C, (12)

stands for the “constant” matrix Q, whereas γ (see (7) for the definition) represents the
combinatorial structure of T . Note that, in the special case where A = T (i.e., mQ = 0),
we have p(I, J) = γ(I, J)− |J |, which is the surplus function used in Lemma 2.

The function p is bisubmodular (cf. (8)) and therefore pI ≡ p(I, ·) : 2C → Z is
submodular for each I ⊆ R, namely,

pI(J1 ∩ J2) + pI(J1 ∪ J2) ≤ pI(J1) + pI(J2), Ji ⊆ C (i = 1, 2). (13)

The submodular function pR (i.e., pI with I = R) is invariant under the LM-equivalence
in the sense that, if A′ is LM-equivalent to A, then Col(A′) may be identified with
C = Col(A) and the functions p and p′ associated respectively with A and A′ satisfy
p(Row(A), J) = p′(Row(A′), J) for J ⊆ C.

The following theorem gives two minimax expressions (14) and (15), similar but
different, for the rank of an LM-matrix. The second expression (15) (or equivalently
(16)), due to Murota [26] [28], Murota-Iri-Nakamura [41], is an extension of the minimax
relation between matchings and covers given in Lemma 2. In fact, the expression (15)
with ρ = 0 reduces to Lemma 2 since then rankA[I, J ] = rankT [I, J ] = τ(I, J) by
Lemma 1.

Theorem 5 Let A ∈ LM(F /K ) and I ⊆ R, J ⊆ C. Then

rankA[I, J ] = min{ρ(I ∩RQ, J ′) + τ(I ∩RT , J ′)− |J ′| | J ′ ⊆ J}+ |J |, (14)

rankA[I, J ] = min{ρ(I ∩RQ, J ′) + γ(I ∩RT , J ′)− |J ′| | J ′ ⊆ J}+ |J |. (15)

Using the function pR the latter formula for I = R, J = C can be written as

rankA = min{pR(J) | J ⊆ C}+ |C|. (16)

(Proof) Lemma 4 shows that rankA = rankM(A) = rank (M(Q) ∨ M(T )). On the
other hand, the matroid union/partition theorem of Edmonds [9] (see also [11], [15], [20],
[53], [54], [55]) says that

rank (M(Q) ∨M(T )) = min{rankQ(RQ, J) + rankT (RT , J) + |C − J | | J ⊆ C},

which establishes (14) for I = R, J = C. The same argument applied to the submatrix
A[I, J ] shows (14).
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The right-hand sides of (14) and (15) are equal, since with the notations I∩RQ = IQ,
I ∩RT = IT , we have

min
J ′⊆J

{ρ(IQ, J ′) + τ(IT , J ′)− |J ′|}
= min

J ′⊆J
{ρ(IQ, J ′) + min

J ′′⊆J ′
{γ(IT , J ′′)− |J ′′|}}

= min
J ′′⊆J

{ min
J ′⊇J ′′

{ρ(IQ, J ′)}+ γ(IT , J ′′)− |J ′′|}
= min

J ′′⊆J
{ρ(IQ, J ′′) + γ(IT , J ′′)− |J ′′|},

where the first equality is by Lemma 2 and the last equality is due to the monotonicity
of ρ(IQ, J) with respect to J for a fixed IQ. 2

The two expressions in Theorem 5 look very similar, with τ in (14) replaced by γ in
(15). Moreover, in both formulas, the functions to be minimized are submodular in J ′.
However, we will see in the next section that the second expression (15), not the first
one, chimes in exact harmony with the admissible transformation (4), with respect to
which we are to consider the block-triangular decomposition.

3 Decomposition (CCF)

3.1 Description of CCF

This section gives a precise description, Theorem 6 below, of the combinatorial canonical
form (CCF), which has already been sketched informally in Examples 2, 3 in Introduc-
tion.

As stated in Theorem 5, the rank of A[I, J ] is expressed by the minimum of pI . Then
it would be natural to look at the family of minimizers:

L(pI) = {J ⊆ C | p(I, J) ≤ p(I, J ′), ∀J ′ ⊆ C}, I ⊆ R, (17)

which, for each I ⊆ R, forms a sublattice of 2C by virtue of the submodularity (13)
of pI . In fact, if both J1 and J2 attain the minimum value, say α, of pI , then 2α ≤
pI(J1 ∩ J2) + pI(J1 ∪ J2) ≤ pI(J1) + pI(J2) = 2α shows that J1 ∩ J2 ∈ L(pI) and
J1 ∪ J2 ∈ L(pI). The sublattice L(pR) plays a crucial role for the block-triangular
decomposition, as explained below.

Here we make use of some fundamental results from lattice theory [2], [3]. Birkhoff’s
representation theorem implies that there exists a one-to-one correspondence between
sublattices of 2C and pairs of a partition of C into blocks and a partial order among the
blocks. This correspondence is given as follows.

Let L be a sublattice of 2C . Take any maximal ascending chain:

X0 (= minL) ⊂ X1 ⊂ · · · ⊂ Xb (= maxL),

where Xk ∈ L, and put

C0 = X0,

Ck = Xk −Xk−1 (k = 1, . . . , b), (18)
C∞ = C −Xb.
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Then the family of the subsets {Ck | k = 1, . . . , b} is uniquely determined, being inde-
pendent of the choice of the chain. A partial order ¹ is introduced on {Ck | k = 1, . . . , b}
by

Ck ¹ Cl ⇐⇒ [X ∈ L, Cl ⊆ X ⇒ Ck ⊆ X].

For convenience, we extend the partial order onto

{C0, C∞} ∪ {Ck | k = 1, . . . , b}

by defining
C0 ¹ Ck (k = 1, . . . , b) if C0 6= ∅,

Ck ¹ C∞ (k = 1, . . . , b) if C∞ 6= ∅.
We also introduce the following notation:

Ck ≺ Cl ⇐⇒ Ck ¹ Cl and Ck 6= Cl;

Ck≺ · Cl ⇐⇒
{

(i) Ck ≺ Cl and
(ii) 6 ∃ Cj such that Ck ≺ Cj ≺ Cl.

In this way, a sublattice L of 2C determines a pair of a partition {C0; C1, . . . , Cb; C∞}
and a partial order ¹, which we denote by

P(L) = ({C0;C1, . . . , Cb; C∞},¹). (19)

Note that Ck 6= ∅ for k = 1, . . . , b, whereas C0 and C∞ are distinguished blocks that can
be empty. It may also be mentioned that a pair of a partition of C and a partial order
among the blocks is nothing but a quasi-order (=reflexive and transitive binary relation
[2]) on C.

Conversely, given P = ({C0; C1, . . . , Cb; C∞},¹), a sublattice L is determined as
follows: X ∈ L if and only if C0 ⊆ X ⊆ C − C∞ and, for 1 ≤ l ≤ b,

X ∩ Cl 6= ∅ ⇒
⋃

Ck¹Cl

Ck ⊆ X.

Namely, L is the family of (order-) ideals containing C0 and contained in C −C∞. Note
that minL = C0 and maxL = C−C∞. This correspondence between L and P is known
to be a one-to-one correspondence.

According to this general principle, the sublattice L(pR) associated with an LM-
matrix A determines P(L(pR)), a pair of a partition of C and a partial order ¹. Note
that by (18) the blocks are indexed consistently with the partial order in the sense that

Ck ¹ Cl ⇒ k ≤ l. (20)

The following theorem, established in an unpublished report by Murota [26] in 1985
and published as Murota [28], Murota-Iri-Nakamura [41], claims the existence of the
CCF of an LM-matrix. The construction of CCF is described in the next subsection
along with an outline of the proof. A complete proof can be found in [26], [28], [41].
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Theorem 6 For an LM-matrix A ∈ LM(F /K ) there exists another LM-matrix Ā
which is LM-equivalent to A and satisfies the following properties.
(B1) [Nonzero structure and partial order ¹ ] Ā is block-triangularized, i.e.,

Ā[Rk, Cl] = O if 0 ≤ l < k ≤ ∞,

where {R0; R1, . . . , Rb;R∞} and {C0; C1, . . . , Cb;C∞} are partitions of Row(Ā) and Col(Ā)
respectively such that Rk 6= ∅, Ck 6= ∅ for k = 1, . . . , b, whereas R0, R∞, C0 and C∞ can
be empty.

Moreover, when Col(Ā) is identified with Col(A), the partition {C0;C1, . . . , Cb; C∞}
agrees with that defined by the lattice L(pR) and the partial order on {C1, . . . , Cb} induced
by the zero/nonzero structure of Ā agrees with the partial order ¹ defined by L(pR); i.e.,

Ā[Rk, Cl] = O unless Ck ¹ Cl (1 ≤ k, l ≤ b);
Ā[Rk, Cl] 6= O if Ck≺ · Cl (1 ≤ k, l ≤ b).

(B2) [Size of the diagonal blocks]

|R0| < |C0| if R0 6= ∅,
|Rk| = |Ck| (> 0) for k = 1, . . . , b,

|R∞| > |C∞| if C∞ 6= ∅.

(B3) [Rank of the diagonal blocks]

rank Ā[R0, C0] = |R0|,
rank Ā[Rk, Ck] = |Rk| = |Ck| for k = 1, . . . , b,

rank Ā[R∞, C∞] = |C∞|.

(B4) [Uniqueness] Ā is the finest block-triangular matrix with properties (B2) and
(B3) that is LM-equivalent to A. Namely, if Â is LM-equivalent to A which is block-
triangularized with respect to certain partitions

(R̂0; R̂1, . . . , R̂q; R̂∞), (Ĉ0; Ĉ1, . . . , Ĉq; Ĉ∞)

of Row(Â) and Col(Â) (= Col(A)) with the diagonal blocks satisfying the conditions
(B2) and (B3), then Ĉk is a union of the blocks defined by L(pR). 2

The matrix Ā above is the CCF of A. The CCF is uniquely determined so far as the
partitions of the row and column sets as well as the partial order among the blocks are
concerned, whereas there remains some indeterminacy, or degree of freedom, in the nu-
merical values of the entries in the Q-part (for example, elementary row transformations
within a block change numerical values without affecting the block structure). See Ā1

and Ā2 in Example 5 below. When the numerical indeterminacy is to be emphasized,
such Ā will be called a CCF, instead of the CCF. We make use of such indeterminacy
in Theorem 7.

The submatrices Ā[R0, C0] and Ā[R∞, C∞] are called the horizontal tail and the
vertical tail, respectively. The tails are nonsquare if they are not empty, and (B1) and
(B3) imply that

rankA = rank Ā = |C| − δ0 = |R| − δ∞
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with
δ0 = |C0| − |R0|, δ∞ = |R∞| − |C∞|.

Hence A is nonsingular if and only if C0 = R∞ = ∅. In Example 3 we have C0 = R∞ = ∅,
and the number of square blocks b = 5.

Example 4 Consider a 4× 5 LM-matrix A = (Q
T ) with

Q =

( x1 x2 x3 x4 x5

1 1 1 1 0
0 2 1 1 0

)
, T =

( x1 x2 x3 x4 x5

t1 0 0 0 t2
0 t3 0 0 t4

)
.

By choosing S =
(

1 −1
0 1

)
in the admissible transformation (4), we obtain the CCF:

Ā =




x3 x4 x1 x2 x5

1 1 2
1 −1 0
t1 0 t2
0 t3 t4




with a nonempty horizontal tail C0 = {x3, x4}, a single (b = 1) square block C1 =
{x1, x2, x5}, and an empty vertical tail C∞ = ∅. It is not difficult to verify that L(pR) =
{C0, C0 ∪ C1}. Example 7 in §6 will illustrate how the CCF, as well as the matrix S,
can be found efficiently. 2

Here we mention an extension of the notion of LM-matrix and its CCF when the base
field is replaced by a ring. Let D be an integral domain [52], and K the field of quotients
of D; it is still assumed that K is a subfield of F . We say that a matrix A = (Q

T ) is an
LM-matrix with respect to F /D, denoted as A ∈ LM(F /D), if A ∈ LM(F /K ) and
furthermore, Q is a matrix over D. Accordingly the admissible transformation over D
is defined to be a transformation of the form (4) with S being a matrix over D with
det S 6= 0. Then the matrix resulting from this transformation is again an LM-matrix
with respect to F /D. Note, however, that an admissible transformation over D is not
always invertible since the inverse of S may not exist among the matrices over D. The
matrix S has its inverse S−1 over D if and only if detS is an invertible element of D,
in which case S is called unimodular over D.

It follows easily from Theorem 6 (see also Example 5 below) that for A ∈ LM(F /D)
there exists an admissible transformation over D, which is not necessarily invertible,
such that the resulting matrix Ā agrees with a CCF of A as an LM-matrix with respect
to F /K .

When the invertibility is imposed upon the admissible transformation, we can still
claim a similar statement when D is a principal ideal domain (PID) [52]; the ring of
integers Z and the ring of univariate polynomials over a field are typical examples of a
PID. It should be clear that a linear extension of a partial order means a linear order
(=total order) that is compatible with the partial order, also called a topological sorting
in computer science. Our indexing convention (20) for the blocks {Ck} in the CCF of A
represents a linear extension of the partial order ¹ in the CCF. The following fact was
observed by Murota [36] (see also [39]) in the case where D is a ring of polynomials.
The proof will be given later in the next subsection.
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Theorem 7 Let A be an LM-matrix with respect to F /D, where D is a PID. Let
{Ck}∞k=0 denote the partition of C in the CCF of A and ¹ the partial order among
the blocks (using the notation of Theorem 6). For any linear extension of ¹, which
is represented by the linear order of the index k of the blocks, there exist permutation
matrices Pr and Pc, a unimodular matrix S over D, and a CCF Ā of A (as an LM-matrix
with respect to F /K ) such that

Â = Pr

(
S O
O I

) (
Q
T

)
Pc

is in the same block-triangular form as Ā, having the same diagonal blocks, i.e., Â[Rk, Cl] =
Ā[Rk, Cl] = O for k > l and Â[Rk, Ck] = Ā[Rk, Ck] for k = 0, 1, . . . , b,∞. (It is not
claimed that Â[Rk, Cl] coincides with Ā[Rk, Cl] for k < l.) 2

Example 5 Let D = Z, K = Q and F = Q(t1, t2), where t1 and t2 are indeterminates.
Consider a 3× 3 LM-matrix with respect to F /Z:

A =




x1 x2 x3

2 −2 −4
3 1 2
0 t1 t2


.

First regard A as a member of LM(F /Q). By choosing S = S1 =
(

1/4 1/2
−3/2 1

)
(with

det S1 = 1) in the admissible transformation (4) we obtain a CCF:

Ā1 =




x1 x2 x3

2
4 8
t1 t2


,

which has two square blocks C1 = {x1} and C2 = {x2, x3} with no order relation between
them.

The transformation using S = S1 is not admissible over Z. However, an admissible
transformation over Z can be constructed easily by putting S = S2 = 4 ·S1, which yields
another CCF:

Ā2 =




x1 x2 x3

8
16 32
t1 t2


.

It is noted however that the admissible transformation with S = S2 is not invertible
since S2 is not unimodular with detS2 = 16.

Restricting S to a unimodular matrix over Z, we may take S = S3 =
(−1 1
−3 2

)

(with detS3 = 1) to transform A to a block-triangular matrix

Â =




x1 x2 x3

1 3 6
8 16
t1 t2



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with order relation C1 = {x1} ¹ C2 = {x2, x3}. This matrix Â has the same diagonal
blocks with

Ā3 =




x1 x2 x3

1
8 16
t1 t2


,

which is another CCF of A obtained with S = S3 =
(

1/8 1/4
−3 2

)
. 2

3.2 Construction of CCF

This subsection gives a sketch of the constructive proof of Theorem 6. A complete proof
can be found in [26], [28], [41]. It should be emphasized that the following mathematical
construction of the CCF can be polished up to a practically efficient algorithm, which
will be described in §6.

First note that the admissible transformation (4) for A ∈ LM(F /K ; mQ,mT , n) is
equivalent to

Pr

(
S O
O PT

) (
Q
T

)
Pc,

which contains another permutation matrix PT . In what follows we will find these four
matrices Pc, S, PT , Pr that bring about the CCF.

[Matrix Pc]: As has been explained in §3.1, the submodular function pR determines
a sublattice L(pR), which in turn yields a pair

P(L(pR)) = ({C0;C1, . . . , Cb; C∞},¹) (21)

of a partition of C = Col(A) = Col(Q) = Col(T ) and a partial order (see (19)). Recall
the relation (18): Xk = ∪k

l=0Cl (0 ≤ k ≤ b) as well as (20). The permutation matrix
Pc is such that the column set C is reordered as C0, C1, . . . , Cb, C∞, where the ordering
within each block is arbitrary.

[Matrix S]: We use a short-hand notation ρ(J) = ρ(RQ, J) = rankQ[RQ, J ] for
J ⊆ C. Put Q0 = QPc, where Col(Q0) is identified with C through permutation
Pc. Since Q0[Row(Q0), C0] contains ρ(X0) independent row vectors and the others are
linearly dependent on them, we can find a nonsingular matrix S0 ∈ GL(mQ,K ) such
that Q1 = S0Q0 satisfies

Q1[Row(Q1)−RQ0, C0] = O,

rankQ1[RQ0, C0] = |RQ0| = ρ(X0)

for some RQ0 ⊆ Row(Q1); that is,

Q1 = S0Q0 =

( C0 C0

RQ0 [≡] ∗
RQ0 O ∗

)
,

where RQ0 = Row(Q1) − RQ0, C0 = C − C0 and [≡] indicates a submatrix with inde-
pendent rows.
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Next, since Q1[Row(Q1), C0 ∪ C1] contains ρ(X1) independent row vectors, we can
find S1 ∈ GL(mQ,K ) such that Q2 = S1Q1 satisfies

Q2[Row(Q2)−RQ0, C0] = O,

Q2[Row(Q2)− (RQ0 ∪RQ1), C0 ∪ C1] = O;

rankQ2[RQ0, C0] = |RQ0| = ρ(X0),
rankQ2[RQ1, C1] = |RQ1| = ρ(X1)− ρ(X0)

for some RQ0, RQ1 ⊆ Row(Q2) with RQ0 ∩RQ1 = ∅. That is,

Q2 = S1Q1 =




C0 C1 C0 ∪ C1

RQ0 [≡] 4 ∗
RQ1 O [≡] ∗

RQ0 ∪RQ1 O O ∗


.

We may further impose that

The nonzero row vectors of Q2[RQ0, C1] (indicated by 4 above)
are linearly independent of the row vectors of Q2[RQ1, C1], (22)

for otherwise we could eliminate the former with the latter.
Continuing such sweep-out operations, we can find a nonsingular matrix S ∈ GL(mQ,K )

and a partition of Row(Q̄):

(RQ0;RQ1, . . . , RQb; RQ∞) (23)

such that Q̄ = SQPc satisfies

Q̄[RQl, Ck] = O (0 ≤ k < l ≤ ∞); (24)

rank Q̄[RQ0, C0] = |RQ0| = ρ(X0),
rank Q̄[RQk, Ck] = |RQk| = ρ(Xk)− ρ(Xk−1) (k = 1, . . . , b), (25)

|RQ∞| = mQ − ρ(Xb).

We may further impose that

For 0 ≤ k < l ≤ ∞, the nonzero row vectors of Q̄[RQk, Cl] are
linearly independent of the row vectors of Q̄[RQl, Cl]. (26)

[Matrix PT ]: Define a partition of RT :

(RT0; RT1, . . . , RTb; RT∞) (27)

by

RT0 = Γ(RT , X0),
RTk = Γ(RT , Xk)− Γ(RT , Xk−1) (k = 1, . . . , b),

RT∞ = Row(T )− Γ(RT , Xb) (28)
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using the Γ of (6). Let PT be a permutation matrix which permutes Row(T ) compatibly
with (27). Then T̄ = PT TPc is in an explicit block-triangular form:

T [RT l, Ck] = T̄ [RT l, Ck] = O (0 ≤ k < l ≤ ∞), (29)

where we identify Row(T̄ ) = Row(T ) and Col(T̄ ) = Col(T ) = C.
[Matrix Pr]: So far we have constructed two block-triangular matrices Q̄ and T̄ , the

former being block-triangularized with respect to the partitions (21) and (23) and the
latter with respect to (21) and (27). Put these two matrices together:

Ā =
(

Q̄
T̄

)
,

and consider a partition of Row(Ā):

(R0; R1, . . . , Rb; R∞), (30)

where Rk = RQk ∪ RTk for k = 0, 1, . . . , b,∞. By (24) and (29), Ā is (essentially)
block-triangularized with respect to the partitions (21) and (30), namely,

Ā[Rl, Ck] = O (0 ≤ k < l ≤ ∞).

The matrix Pr is to rearrange Row(Ā) compatibly with (30).
The block-triangular matrix Ā constructed in this way is obviously LM-equivalent

to A. Based on the rank formula of Theorem 5 we can show that this matrix enjoys
the properties (B2) to (B4). We will indicate the essense here, referring the reader to
[28], pp. 177–179, for the complete proof. In addition to ρ(J) we use another short-hand
notation γ(J) = γ(RT , J) for J ⊆ C.

Consider the horizontal tail Ā[R0, C0]. Since C0 ∈ L(pR), ρ(C0) = |RQ0| and γ(C0) =
|RT0|, we have

0 = pR(∅) ≥ min pR = pR(C0) = ρ(C0) + γ(C0)− |C0| = |R0| − |C0|,
which, combined with Theorem 5, implies

rank Ā[R0, C0] = rank Ā[Row(Ā), C0] = rankA[R, C0] = min pR + |C0| = |R0|.
This shows in particular that |R0| ≤ |C0|. If the equality holds here, then pR(∅) =
min pR, i.e., ∅ ∈ L(pR). Since C0 = minL(pR), this implies C0 = ∅ and therefore
R0 = ∅. Hence follow (B2) and (B3) for the horizontal tail.

For the first square block Ā[R1, C1] we note that pR(C0) = pR(C0 ∪ C1) = min pR.
This shows

|R1| = |R0 ∪R1| − |R0|
= (ρ(C0 ∪ C1)− ρ(C0)) + (γ(C0 ∪ C1)− γ(C0))
= pR(C0 ∪ C1)− pR(C0) + |C1| = |C1|.

It also follows from Theorem 5, as well as the relation: min pR = |R0| − |C0| shown
above, that

rank Ā[R0 ∪R1, C0 ∪ C1] = rank Ā[Row(Ā), C0 ∪ C1]
= rankA[R, C0 ∪ C1]
= min pR + |C0|+ |C1| = |R0|+ |R1|.
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This shows rank Ā[R1, C1] = |R1| since rank Ā[R0, C0] = |R0|.
The conditions (B2) and (B3) for the remaining blocks can be shown similarly. The

invariance of pR explained after (13) is the key to prove the uniqueness (B4); see [28],
p. 179. We may mention that the argument above conforms with the Jordan-Hölder
type decomposition principle for submodular functions developed by Iri [19], Nakamura
[43], Tomizawa [51].

A similar argument establishes Theorem 7, which is concerned with the block-
triangularization with respect to a unimodular transformation over a PID. The Hermite
normal form [44], [50] under a unimodular transformation guarantees the existence of a
unimodular matrix S such that Q̄ = SQPc satisfies (24) and (25). However, we cannot
impose the further condition (22) or (26), which fact causes the discrepancy in the upper
off-diagonal blocks of Â and Ā.

19



4 Irreducibility

In this section we investigate into the notion of LM-irreducibility. Most of the results
below are natural extensions of the results concerning the full indecomposability (or
DM-irreducibility) of a generic matrix. See Schneider [49] for a historical account on the
notion of full indecomposability.

First recall the definition (see §1) of the LM-irreducibility with respect to the admis-
sible transformation. Namely, an LM-matrix A is LM-irreducible (or simply irreducible)
if it does not split into more than one nonempty block under the admissible trans-
formation, or more precisely, if any LM-matrix A′ that is LM-equivalent to A is fully
indecomposable.

With reference to the CCF, Ā, of A, we see that each block Ā[Rk, Ck] of the CCF is
irreducible (k = 0, 1, . . . , b,∞) using the notation of Theorem 6. Hence, A is irreducible
if (a) b = 1 and C0 = R∞ = ∅, (b) b = 0 and R∞ = ∅, or (c) b = 0 and C0 = ∅.

Combining this observation with Theorem 6(B1) we obtain the following character-
ization of LM-irreducibility in terms of the lattice L(pR) of minimizers of pR. This is a
kind of “dual” characterization of the LM-irreducibility as opposed to the “primal” char-
acterization (definition) in terms of the indecomposability with respect to the admissible
transformation.

Theorem 8 Let A ∈ LM(F /K ).
(a) In case |R| = |C|: A is LM-irreducible ⇐⇒ L(pR) = {∅, C};
(b) In case |R| < |C|: A is LM-irreducible ⇐⇒ L(pR) = {C};
(c) In case |R| > |C|: A is LM-irreducible ⇐⇒ L(pR) = {∅}. 2

This characterization will be rephrased in a more algorithmic statement later in
Theorem 17.

The following theorem refers to the rank of submatrices of an LM-irreducible matrix.
This is an extension of the result due to Marcus-Minc [22] and to Brualdi [4] for a generic
matrix (cf. p.112 of [5]); see also Theorem 4.2.2 of [5].

Theorem 9 Let A ∈ LM(F /K ) be LM-irreducible.
(a) In case |R| = |C|: rankA[R− {i}, C − {j}] = |R| − 1 (∀i ∈ R, ∀j ∈ C);
(b) In case |R| < |C|: rankA[R,C − {j}] = |R| (∀j ∈ C);
(c) In case |R| > |C|: rankA[R− {i}, C] = |C| (∀i ∈ R).

(Proof) (a) Put R′ = R − {i}, C ′ = C − {j} and suppose that A[R′, C ′] were singular.
Then, by Theorem 5, p(R′, J ′) ≤ −1 for some J ′ (∅ 6= J ′ ⊆ C ′). On the other hand, it
follows from

p(R, J ′)− p(R′, J ′) =

{
ρ(RQ, J ′)− ρ(RQ − {i}, J ′) (if i ∈ RQ)
γ(RT , J ′)− γ(RT − {i}, J ′) (if i ∈ RT )

that p(R, J ′) − p(R′, J ′) ≤ 1. Hence p(R, J ′) ≤ p(R′, J ′) + 1 ≤ 0, which would imply
J ′ ∈ L(pR), a contradition to Theorem 8(a). The proofs for (b), (c) are similar; see [29].
2

As immediate corollaries we obtain the following properties of a nonsingular irre-
ducible LM-matrix. We regard the determinant of A ∈ LM(F /K ) as a polynomial in
T (=set of nonzero entries of T ) with coefficients from the base field K .
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Theorem 10 Let A ∈ LM(F /K ) be nonsingular and LM-irreducible.
(1) A−1 is completely dense, i.e., (A−1)ji 6= 0, ∀ (i, j).
(2) Each element of T appears in detA. 2

The following theorem of Murota [29] states to the effect that the combinatorial
irreducibility (namely LM-irreducibility) is essentially equivalent to the algebraic irre-
ducibility of the determinant. This is an extension of the result of Frobenius [12] for a
generic matrix (see also [5], [47], [48], [49]).

Theorem 11 Let A ∈ LM(F /K ) be nonsingular. The determinant det A is an irre-
ducible polynomial in the ring K [T ] if A is LM-irreducible. Conversely, if detA is an
irreducible polynomial, then there exists in the CCF of A at most one diagonal block
which contains elements of T and all the other diagonal blocks are 1 × 1 matrices over
K .

(Proof) The proof for the first half is long; see [29]. The second half follows easily from
Theorem 6 and Theorem 10(2). 2

A minor (=subdeterminant) of A ∈ LM(F /K ) is also a polynomial in T over K .
Let dk(T ) ∈ K [T ] denote the k-th determinantal divisor of A, i.e., the greatest common
divisor of all minors of order k in A as polynomials in T over K . Note that dk(T ) ∈
K ∗ = K − {0} means dk(T ) is a “constant” free from any variables in T .

Theorem 12 Let A ∈ LM(F /K ) be LM-irreducible.
(a) In case |R| = |C|: dk(T ) ∈ K ∗ for k = 1, . . . , |R| − 1;
(b) In case |R| < |C|: dk(T ) ∈ K ∗ for k = 1, . . . , |R|;
(c) In case |R| > |C|: dk(T ) ∈ K ∗ for k = 1, . . . , |C|.

(Proof) (a) It suffices to show that dk(T ) is free from any t ∈ T for k = |R|−1. Suppose t
appears at position (i, j). It follows from Theorem 9(a) that δ ≡ detA[R−{i}, C−{j}] 6=
0. Obviously δ does not contain t, and, a fortiori, dk(T ) does not contain t, since dk(T )
is a divisor of δ. (b) and (c) can be proven similarly using Theorem 9. 2

For a general (reducible) LM-matrix Theorems 6, 11 and 12 together imply the
following.

Theorem 13 Let r be the rank of A ∈ LM(F /K ). Then dk(T ) ∈ K ∗ for k = 1, . . . , r−
1, and the decomposition of the r-th determinantal divisor dr(T ) of A into irreducible
factors in the ring K [T ] is given by

dr(T ) = α ·
b∏

l=1

det Ā[Rl, Cl],

where Ā[Rl, Cl] (l = 1, . . . , b) are the irreducible square blocks in the CCF of A, and
α ∈ K ∗. (Exactly speaking, those factors on the right-hand side which belong to K
should not be counted as irreducible factors in K [T ] since they are invertible elements
in K [T ].) 2
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5 Further Properties

5.1 Principal structure of LM-matrices

A submatrix A[I, C] (with I ⊆ R) of an LM-matrix A is again an LM-matrix, for which
the CCF is defined. The CCF of A[I, C], in turn, defines a partition of C, which varies
with I. Let us denote by PCCF(I) (cf. (21)) the pair of the partition of C and the partial
order among the blocks in the CCF of the submatrix A[I, C]. Here we are interested in
the family {PCCF(I) | I ∈ B} of partitions, where

B = {I ⊆ R | rankA = rankA[I, C] = |I|},

which denotes the family of row-bases of A. The theorem below gives a concise char-
acterization of the coarsest common refinement of {PCCF(I) | I ∈ B} in terms of the
submodular function pR associated with the whole matrix A.

The characterization refers to the notion of “principal structure of a submodular
system” introduced by Fujishige [14], [15]. For j ∈ C consider the family Lj of the
minimizers of pR over {J ⊆ C | J 3 j}:

Lj = {J ⊆ C | J 3 j; pR(J) ≤ pR(J ′) ∀J ′ 3 j},

which forms a sublattice of 2C because of the submodularity (13) of pR. Denote by D(j)
the (uniquely determined) smallest set of Lj . The binary relation ¹pR on C defined by
[i ¹pR j ⇐⇒ i ∈ D(j)], or equivalently by [i ¹pR j ⇐⇒ D(i) ⊆ D(j)], is a quasi-order,
being reflexive and transitive. Then the equivalence relation defined by [i ¹pR j and
j ¹pR i] determines a partition of C into blocks, among which a partial order is induced
from the original quasi-order. This is called the principal structure, to be denoted as
PPS, of the submodular system of (C, pR).

The following theorem of Murota [32] shows that the coarsest common refinement
of {PCCF(I) | I ∈ B} agrees with the principal structure of the submodular system of
(C, pR).

Theorem 14
PPS =

∧

I∈B
PCCF(I),

where the right-hand side designates the coarsest partition of C which is finer than all
PCCF(I) with I ∈ B. 2

In view of the correspondence (as explained in §3.1) between the family of partitions
{PCCF(I) | I ∈ B} and the family of sublattices {L(pI) | I ∈ B}, we can think of this
theorem as a characterization of the sublattice generated by {L(pI) | I ∈ B}.

The essential content of the above theorem for the special case of a generic matrix
A = T (with mQ = 0) has been obtained by McCormick [23] (without reference to the
notion of principal structure).
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Example 6 Consider a 5× 3 LM-matrix (with base field Q):

A =




x1 x2 x3

r1 1 2 1
r2 1 1 −1
r3 0 t1 t2
r4 0 t3 t4
r5 t5 t6 0




,

where C = {x1, x2, x3}, R = {r1, r2, r3, r4, r5}, and ti (i = 1, . . . , 6) are indeterminates.
This matrix is LM-irreducible, the whole matrix being a vertical tail.

For a nonsingular submatrix A[I, C] with I = {r1, r2, r3}, we obtain its CCF




x1 x2 x3

r1 1 2 1
r2 −1 −2
r3 t1 t2




by subtracting row r1 from row r2 in A[I, C]. Hence, PCCF(I) is given by {x1} ≺ {x2, x3}.
By inspection we see that B = {I ⊂ R | |I| = 3}. PCCF(I) for all I ∈ B are given as

follows.

I ∈ B PCCF(I)
{r1, r2, r5} {x3} ≺ {x1, x2}
{ri, rj , r5}(i = 1, 2; j = 3, 4) {x1, x2, x3}
Otherwise {x1} ≺ {x2, x3}

This shows that
∧

I∈B PCCF(I) is given by {x1} ≺ {x2}, {x3} ≺ {x2}. On the other
hand, we have D(x1) = {x1}, D(x2) = C, D(x3) = {x3} since pR(∅) = 0, pR({x1}) = 1,
pR({x2}) = 3, pR({x3}) = 2, pR({x1, x2}) = 3, pR({x1, x3}) = 3, pR({x2, x3}) = 3,
pR(C) = 2. Hence PPS agrees with {x1} ≺ {x2}, {x3} ≺ {x2}. Note also that PPS 6=
PCCF(I) for each I ∈ B. 2

5.2 Properties of mixed matrices

In this subsection A = Q + T denotes a mixed matrix with respect to F /K , with
Row(A) = R and Col(A) = C.

If A is nonsingular, it can be decomposed into LU-factors as Pr A Pc = L U with
suitable permutation matrices Pr and Pc. In general the entries of the matrices L and
U are rational functions in T (=set of nonzero entries of T ) over K . If all the diagonal
entries of L and U belong to K , then obviously detA ∈ K . The following theorem of
Murota [24] asserts that the converse is also true (see [24], [28] for the proof). Recall
the notation K ∗ = K − {0}.

Theorem 15 Let A = Q + T be a mixed matrix with base field K . Then detA ∈ K ∗

if and only if there exist permutation matrices Pr and Pc, and LU-factors L and U :
Pr A Pc = L U such that (i) Lii = 1 and Lij = 0 for i < j; (ii) Uij is a polynomial (of
degree at most one) in T over K for i > j, Uii ∈ K ∗, and Uij = 0 for i > j. 2
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The final theorem of this section is an extension of the “determinantal version of
the Frobenius-König theorem” due to Hartfiel-Loewy [17], who established it in the case
where A is a square mixed matrix. Their original proof (for square case) is quite involved
based on factorizations of determinants. Here we provide an alternative proof using the
rank formula of Theorem 5 for LM-matrices.

Theorem 16 Let A = Q + T be a mixed matrix. Then rankA < |C| if and only if (i)
T [I, J ] = O and (ii) rankQ[I, J ] < |I|+ |J | − |R| for some I ⊆ R and J ⊆ C. Similarly,
rankA < |R| if and only if (i) T [I, J ] = O and (ii) rankQ[I, J ] < |I|+ |J |− |C| for some
I ⊆ R and J ⊆ C.

(Proof) Consider the LM-matrix Ã of (3) for A and let p : 2R̃×2R∪C → Z be the function
defined for Ã as in (11), where R̃ = Row(Ã) and we identify Col(Ã) with R ∪ C. Then

p(R̃, (R− I) ∪ J) = rankQ[I, J ] + |(R− I) ∪ Γ(R, J)| − |J |

with Γ(R, J) = {i ∈ R | ∃j ∈ J : Tij 6= 0} (cf. (6)), where it should be clear that
I ⊆ Col(Ã) on the left-hand side and I ⊆ Row(A) on the right-hand side. Theorem 5
applied to Ã implies that rank Ã < |R|+ |C| if and only if p(R̃, (R− I)∪J) < 0 for some
I ⊆ R and J ⊆ C. In the latter condition we may assume that I ∩ Γ(R, J) = ∅, i.e., (i)
T [I, J ] = O, and then p(R̃, (R− I)∪ J) < 0 reduces to (ii) rankQ[I, J ] < |I|+ |J | − |R|.
The proof for the first claim is completed by the obvious relation: rank Ã = rankA+ |R|.
The second claim follows from the first applied to A transposed. 2

Most of the results for an LM-matrix can be carried over to those for a mixed matrix
by way of the correspondence (3). In particular, we define an admissible transformation
for a mixed matrix A to be a transformation of the form: S A Pc, where S is a nonsingular
matrix over K and Pc a permutation matrix. See [28] and [29].
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6 Algorithm for CCF

An efficient algorithm is described here which computes the CCF of an LM-matrix
A ∈ LM(F /K ;mQ,mT , n) in O(n3 log n) time with arithmetic operations in the subfield
K only, where m = mQ+mT = O(n) is assumed for simplicity in this complexity bound.
This section is an improved presentation of §3.2 of Murota [38].

In order to illustrate a connection between the CCF and the Dulmage-Mendelsohn
decomposition we first restrict ourselves to a nonsingular LM-matrix A. In this case the
CCF can be found as follows.

[Algorithm (outline) for the CCF of a nonsingular A ]

Step 1: Find J ⊆ C such that both Q[RQ, J ] and T [RT , C − J ] are nonsingular (such
J exists by Lemma 3).

Step 2: Let S denote the inverse of Q[RQ, J ] and put

A′ :=
(

S O
O I

)
A.

Step 3: Find the Dulmage-Mendelsohn decomposition Ā of A′, namely, Ā := Pr A′ Pc

with suitable permutation matrices Pr and Pc. (Ā is the CCF of A.) 2

The first step (Step 1) is nothing but the well-studied problem of matroid partition
and a number of efficient algorithms are available for it; see Edmonds [9] and Lawler
[20]. The DM-decomposition in the last step (Step 3) can be computed by first finding
a maximum (perfect) matching in the bipartite graph associated with A′, i.e., the graph
denoted as G(A′) at the beginning of §3.1, and then decomposing an auxiliary digraph
into strongly connected components. See, e.g., [5], [21], [28] for more detail on the
DM-decomposition.

For the LM-matrix of Example 3, which is nonsingular, we can take J = {ξ5, ξ3, ξ4, η4, η3}
in Step 1. The transformation matrix S given in Example 3 is equal to the inverse of

Q[RQ, J ] =




ξ5 ξ3 ξ4 η4 η3

1 1 1 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 −1 1




.

For a general (not necessarily nonsingular) LM-matrix it has been shown that the
CCF can be constructed by identifying the minimum cuts in an independent-flow prob-
lem. See Prop. 20.1 of [28] as well as [41] for this reduction and Fujishige [13], [15] for
independent-flow problems.

The detail of the algorithm for a general LM-matrix A ∈ LM(F /K ; mQ,mT , n) is
now described. As before let RT = Row(T ) and C = Col(A). Furthermore let CQ be a
disjoint copy of C, where the copy of j ∈ C will be denoted as jQ ∈ CQ. The algorithm
works with a directed graph G = (V, B) with vertex set V = RT ∪ CQ ∪ C and arc set
B = BT ∪BC ∪B+ ∪M , where

BT = {(i, j) | i ∈ RT , j ∈ C, Tij 6= 0}, BC = {(jQ, j) | j ∈ C},
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and B+ and M are sets of arcs which are defined and updated in the algorithm; B+

consists of arcs from CQ to CQ and M from C to RT ∪CQ. The set of end-vertices of M
(vertices incident to an arc in M) will be designated as ∂M (⊆ V ). Besides the graph
G we use two matrices (or two-dimensional arrays) P and S, as well as a vector (or
one-dimensional array) base. The array P represents a matrix over K , of size mQ × n,
where P = Q at the beginning of the algorithm (Step 1 below). The other array S is
also a matrix over K , of size mQ ×mQ, which is set to the unit matrix in Step 1 and
finally gives the matrix S in the admissible transformation (4). Variable base is a vector
of size mQ, which represents a mapping (correspondence): RQ → C ∪ {0}.
[Algorithm for the CCF of a general A ]

Step 1:

M := ∅; base[i] := 0 (i ∈ RQ); P [i, j] := Qij (i ∈ RQ, j ∈ C);

S := unit matrix of order mQ.

Step 2:

I := {i ∈ C | iQ ∈ ∂M ∩ CQ};
J := {j ∈ C − I | For all i, base[i] = 0 implies P [i, j] = 0};
S+

T := RT − ∂M ; S+
Q := {jQ ∈ CQ | j ∈ C − (I ∪ J)}; S+ := S+

T ∪ S+
Q ;

S− := C − ∂M ;

B+ := {(iQ, jQ) | h ∈ RQ, j ∈ J, P [h, j] 6= 0, i = base[h]};
If there exists in G a directed path from S+ to S− then go to Step 3; otherwise
(including the case where S+ = ∅ or S− = ∅) go to Step 4.

Step 3:

Let L (⊆ B) be (the set of arcs on) a shortest path from S+ to S− (“shortest” in
the number of arcs);

M := (M − L) ∪ {(j, i) | (i, j) ∈ L ∩BT } ∪ {(j, jQ) | (jQ, j) ∈ L ∩BC};
If the initial vertex (∈ S+) of the path L belongs to S+

Q , then do the following:

{Let jQ (∈ S+
Q ⊆ CQ) be the initial vertex;

Find h such that base[h] = 0 and P [h, j] 6= 0;

[j ∈ C corresponds to jQ ∈ CQ]

base[h] := j; w := 1/P [h, j];

P [k, l] := P [k, l]− w × P [k, j]× P [h, l] (h 6= k ∈ RQ, l ∈ C);

S[k, l] := S[k, l]− w × P [k, j]× S[h, l] (h 6= k ∈ RQ, l ∈ RQ) };
For all (iQ, jQ) ∈ L ∩B+ (in the order from S+ to S− along L) do the following:

{Find h such that i = base[h]; [j ∈ C corresponds to jQ ∈ CQ]

base[h] := j; w := 1/P [h, j];

P [k, l] := P [k, l]− w × P [k, j]× P [h, l] (h 6= k ∈ RQ, l ∈ C);

S[k, l] := S[k, l]− w × P [k, j]× S[h, l] (h 6= k ∈ RQ, l ∈ RQ) };
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Go to Step 2.

Step 4:

Let V∞ (⊆ V ) be the set of vertices reachable from S+ by a directed path in G;

Let V0 (⊆ V ) be the set of vertices reachable to S− by a directed path in G;

C0 := C ∩ V0; C∞ := C ∩ V∞;

Let G′ denote the graph obtained from G by deleting the vertices V0 ∪ V∞ (and
arcs incident thereto);

Decompose G′ into strongly connected components {Vλ | λ ∈ Λ} (Vλ ⊆ V );

Let {Ck | k = 1, . . . , b} be the subcollection of {C ∩ Vλ | λ ∈ Λ} consisting of all
the nonempty sets C ∩ Vλ, where Ck’s are indexed in such a way that for l < k
there does not exist a directed path in G′ from Ck to Cl;

R0 := (RT ∩ V0) ∪ {h ∈ RQ | base[h] ∈ C0};
R∞ := (RT ∩ V∞) ∪ {h ∈ RQ | base[h] ∈ C∞ ∪ {0}};
Rk := (RT ∩ Vk) ∪ {h ∈ RQ | base[h] ∈ Ck} (k = 1, . . . , b);

Ā := Pr

(
P
T

)
Pc, where the permutation matrices Pr and Pc are determined so

that the rows and the columns of Ā are ordered as (R0; R1, . . . , Rb; R∞) and
(C0;C1, . . . , Cb; C∞), respectively. 2

The subsets I ⊆ C and J ⊆ C represent the structure of the matroid M(Q) defined
by the matrix Q; I is an independent set in M(Q) (i.e., rankQ[RQ, I] = |I|), whereas
J∪I is the closure (cf. [53], [54]) of I (i.e., J = {j ∈ C−I | rankQ[RQ, I∪{j}] = |I|). On
the other hand, (∂M ∩C)− I is an independent set in the other matroid M(T ) defined
by the matrix T . Hence ∂M∩C (= I∪((∂M∩C)−I) ) is independent in M(Q)∨M(T ).
Since M(Q) ∨M(T ) = M(A), by Lemma 4, we have rankA[R, ∂M ∩ C] = |M |. At
each execution of Step 3 the size of M increases by one, and at the termination of the
algorithm we have the relation: rankA = |M |.

The matrix Ā is the CCF of the input matrix A, where {R0; R1, . . . , Rb; R∞} and
{C0; C1, . . . , Cb;C∞} give the partitions of the row set and the column set, respectively.
The partial order among the blocks is induced from the partial order among the strongly
connected components {Vλ | λ ∈ Λ}.

The shortest path in Step 3 and the strongly connected components in Step 4 can
be found in time linear in the size of the graph G, which is O((n + m)2), by means of
the standard graph algorithms; see, e.g., [1].

The updates of P in Step 3 are the standard pivoting operations [16] on P , which
is a matrix over the subfield K . The sparsity of P should be taken into account in
actual implementations of the algorithm; for example, P [h, j] = 0 if base[h] = 0 and
j ∈ I ∪ J . Computational techniques developed for solving sparse linear programs can
be utilized here. As indicated in Step 3, pivoting operations are required for each arc
(iQ, jQ) ∈ L ∩ B+. It is important to traverse the path L from S+ to S−, not from S−

to S+, to avoid unnecessary fill-ins. When the transformation matrix S is not needed,
it may simply be eliminated from the computation without any side effect.

The above algorithm will be efficient enough also for practical applications. It would
be still more efficient if we first compute the DM-decomposition by purely graph-theoretic
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algorithm and then apply the above algorithm to each of the DM-irreducible components;
such two-stage procedure works since the CCF is a refinement of the DM-decomposition.

Finally we mention a characterization of the LM-irreducibility in terms of the graph
used in the algorithm.

Theorem 17 Let A be a square LM-matrix. A is LM-irreducible (and hence nonsingu-
lar) if and only if in Step 4 of the algorithm both V0 and V∞ are empty and graph G′

(= G) is strongly connected. 2

Example 7 The algorithm above is illustrated here for a 4 × 5 LM-matrix A = (Q
T )

with

Q =

( x1 x2 x3 x4 x5

1 1 1 1 0
0 2 1 1 0

)
, T =

( x1 x2 x3 x4 x5

f1 t1 0 0 0 t2
f2 0 t3 0 0 t4

)
,

where Col(A) = C = {x1, x2, x3, x4, x5} and Row(T ) = RT = {f1, f2}. We work with a
2× 5 matrix P , a 2× 2 matrix S, and a vector base of size 2. The copy of C is denoted
as CQ = {x1Q, x2Q, x3Q, x4Q, x5Q}.

The flow of computation is traced below.

Step 1: M := ∅;

base :=

(
r1 0
r2 0

)
, P :=

( x1 x2 x3 x4 x5

r1 1 1 1 1 0
r2 0 2 1 1 0

)
, S :=

(
1 0
0 1

)
.

Step 2: I := ∅; J := {x5};
S+

T := {f1, f2}; S+
Q := {x1Q, x2Q, x3Q, x4Q}; S+ := {f1, f2, x1Q, x2Q, x3Q, x4Q};

S− := {x1, x2, x3, x4, x5};
B+ := ∅;
There exists a path from S+ to S−. [See G(0) in Fig.1]

Step 3: L := {(x1Q, x1)}; M := {(x1, x1Q)};
The initial vertex x1Q of L is in S+

Q , and the matrices are updated (with h = r1)
to

base :=

(
r1 x1

r2 0

)
, P :=

( x1 x2 x3 x4 x5

r1 1 1 1 1 0
r2 0 2 1 1 0

)
, S :=

(
1 0
0 1

)
.

Noting L ∩B+ = ∅ we return to Step 2.

Step 2: I := {x1}; J := {x5};
S+

T := {f1, f2}; S+
Q := {x2Q, x3Q, x4Q}; S+ := {f1, f2, x2Q, x3Q, x4Q};

S− := {x2, x3, x4, x5};
B+ := ∅;
There exists a path from S+ to S−. [See G(1) in Fig.2]
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Figure 1: Graph G(0) (+: vertices in S+; −: vertices in S−)
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Figure 3: Graph G(2) (©: arcs in M ; +: vertices in S+; −: vertices in S−)

Step 3: L := {(x2Q, x2)}; M := {(x1, x1Q), (x2, x2Q)};
The initial vertex x2Q of L is in S+

Q , and the matrices are updated (with h = r2)
to

base :=

(
r1 x1

r2 x2

)
, P :=

( x1 x2 x3 x4 x5

r1 1 0 1/2 1/2 0
r2 0 2 1 1 0

)
, S :=

(
1 −1/2
0 1

)
.

Noting L ∩B+ = ∅ we return to Step 2.

Step 2: I := {x1, x2}; J := {x3, x4, x5};
S+

T := {f1, f2}; S+
Q := ∅; S+ := {f1, f2}; S− := {x3, x4, x5};

B+ := {(x1Q, x3Q), (x1Q, x4Q), (x2Q, x3Q), (x2Q, x4Q)};
There exists a path from S+ to S−. [See G(2) in Fig.3]

Step 3: L := {(f1, x5)}; M := {(x1, x1Q), (x2, x2Q), (x5, f1)};
The initial vertex f1 6∈ S+

Q and L ∩ B+ = ∅, and therefore the matrices remain
unchanged and we return to Step 2.

Step 2: I := {x1, x2}; J := {x3, x4, x5};
S+

T := {f2}; S+
Q := ∅; S+ := {f2}; S− := {x3, x4};

B+ := {(x1Q, x3Q), (x1Q, x4Q), (x2Q, x3Q), (x2Q, x4Q)};
There exists a path from S+ to S−. [See G(3) in Fig.4]

Step 3: L := {(f2, x2), (x2, x2Q), (x2Q, x3Q), (x3Q, x3)};
M := {(x1, x1Q), (x3, x3Q), (x5, f1), (x2, f2)};
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Figure 4: Graph G(3) (©: arcs in M ; +: vertex in S+; −: vertices in S−)
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Figure 5: Graph G(4) (©: arcs in M ; S+ = ∅, −: vertex in S−)

The initial vertex f2 6∈ S+
Q and L ∩ B+ = {(x2Q, x3Q)}, and the matrices are

updated (with h = r2) to

base :=

(
r1 x1

r2 x3

)
, P :=

( x1 x2 x3 x4 x5

r1 1 −1 0 0 0
r2 0 2 1 1 0

)
, S :=

(
1 −1
0 1

)
.

Step 2: I := {x1, x3}; J := {x2, x4, x5};
S+

T := ∅; S+
Q := ∅; S+ := ∅; S− := {x4};

B+ := {(x1Q, x2Q), (x3Q, x2Q), (x3Q, x4Q)};
There exists no path from S+ (= ∅) to S−. [See G(4) in Fig.5]

r
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Figure 6: Graph G′ (Vλ1 , Vλ2 : strongly connected components)

Step 4: V∞ := ∅; V0 := {x3, x4, x3Q, x4Q};
C0 := {x3, x4}; C∞ := ∅;
Strongly connected components of G′ (cf. Fig.6) are given by {Vλ1 , Vλ2}, where
Vλ1 = {x1, x2, x5, x1Q, x2Q, f1, f2} and Vλ2 = {x5Q};
Since C ∩ Vλ2 = ∅, we have b := 1 and C1 := C ∩ Vλ1 = {x1, x2, x5};
R0 := {r2}; R∞ := ∅; R1 := {r1, f1, f2};

Ā := Pr

(
P
T

)
Pc =




x3 x4 x1 x2 x5

r2 1 1 0 2 0
r1 1 −1 0
f1 t1 0 t2
f2 0 t3 t4




is the CCF. 2

7 Conclusion

As a mathematical model for investigating the structure of linear dynamical systems,
Murota [25], [28] proposed to consider a polynomial matrix D(s) in indeterminate s over
a field F (⊃ Q) which is represented as

D(s) = Q(s) + T (s),

where

(A1): The set of the nonzero coefficients of the entries of T (s) is algebraically indepen-
dent over Q, and

(A2): Every nonvanishing subdeterminant of Q(s) is a monomial in s over Q.
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Note that the assumption (A1) implies D(s) is a mixed matrix with base field K = Q(s).
See [25], [28], [38] for physical backgrounds of the conditions (A1) and (A2); [27], [31],
[42] for applications to control problems; and [30], [35], [39] for more recent results on
such polynomial matrices.

As an extension of the CCF, Murota [34] considered the decomposition of an LM-
matrix A ∈ LM(F /K ) with respect to a larger class of admissible transformations
of the form: Sr A Sc with Sr and Sc nonsingular matrices over K . This paper also
considered the decomposition of A under this extended admissible transformation when
A has certain symmetry expressed as an invariance with respect to a finite group.

Poljak [45] gave a combinatorial characterization to the rank of a power product,
rankT k, for a generic matrix T . It will be interesting to see whether his result can be
extended to a mixed matrix.

Yamada-Luenberger [57] introduced the notion of “column-structured matrices” as
a generalization of generic matrices.
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