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Chapter 1

Introduction to the
Central Concepts

“Discrete Convex Analysis” aims at establishing a new theoretical framework of dis-
crete optimization through mathematical studies of “convex functions with combi-
natorial structures” or “discrete functions with convexity structures.” This chapter
is a succinct introduction to the central issues discussed in this book, including the
role of convexity in optimization, several classes of well-behaved discrete functions,
and duality theorems. We start with an account of the aim and the history of
discrete convex analysis.

1.1 Aim and History of Discrete Convex Analysis
The motive for “Discrete Convex Analysis” is explained in general terms of opti-
mization. Also included in this section is a brief chronological account of discrete
convex functions in relation to the theory of matroids and submodular functions.

1.1.1 Aim

An optimization problem, or a mathematical programming problem, may be ex-
pressed generically as:

Minimize f(x) subject to x ∈ S.

This means that we are to find an x that minimizes the value of f(x) subject to
the constraint that x should belong to the set S. Both f and S are given as the
problem data, whereas x is a variable to be determined. The function f is called
the objective function and the set S the feasible set .

In continuous optimization, variable x typically denotes a finite-dimensional
real vector, say x ∈ Rn, and accordingly we have S ⊆ Rn and f : Rn → R (or
f : S → R).1) An optimization problem with S being a convex set and f a convex
function is referred to as a convex program, where a set S is convex if the line

1)Notation R means the set of all real numbers, and Rn the set of n-dimensional real vectors.
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Figure 1.1. Convex set and nonconvex set
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Figure 1.2. Convex function

segment joining any two points in S is contained in S (see Fig. 1.1), and a function
f : S → R defined on a convex set S is convex if

λf(x) + (1− λ)f(y) ≥ f(λx + (1− λ)y) (1.1)

whenever x, y ∈ S and 0 ≤ λ ≤ 1 (see Fig. 1.2). Convex programs constitute a class
of optimization problems that are tractable both theoretically and practically, with
a firm theoretical basis provided by “convex analysis.” The tractability of convex
programs is largely based on the following properties of convex functions:

1. Local optimality (or minimality) guarantees global optimality . This implies,
in particular, that a global optimum can be found by descent algorithms;

2. Duality such as min-max relation and separation theorem holds good. This
leads, for instance, to primal-dual algorithms using dual variables and also to
sensitivity analysis in terms of dual variables.

Some more details on these issues will be discussed in §1.2.
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In discrete optimization (or combinatorial optimization), on the other hand,
variable x takes discrete values; most typically, x is an integer vector or a {0, 1}-
vector. Whereas almost all discrete optimization problems arising from practical
applications are difficult to solve efficiently, network flow problems are recognized as
tractable discrete optimization problems. In the minimum cost flow problem with
linear arc costs, for instance, we have the following fundamental facts that render
the problem tractable:

1. A flow is optimal if and only if it cannot be improved by augmentation along
a cycle. This statement means that the global optimality of a solution can be
characterized by the “local optimality” with respect to augmentation along a
cycle;

2. A flow is optimal if and only if there exists a potential on the vertex set
such that the reduced arc cost with respect to the potential is nonnegative
on every arc. This is a duality statement characterizing the optimality of
a flow in terms of the dual variable (potential). This provides the basis for
primal-dual algorithms.

In more abstract terms, it is an accepted understanding that the tractability of
the network flow problems stems from the “matroidal structure” (or “submodular-
ity”) inherent therein. Whereas the meaning of this statement will be substantiated
later, it is mentioned at this point that a matroid is an abstract combinatorial ob-
ject defined as a pair of a finite set, say V , and a family B of subsets of V that
satisfies certain abstract axioms. We refer to V as the ground set, a member of B
as a base, and a subset of a base as an independent set. Matroid is considered to
be fundamental in combinatorial optimization, which is evidenced by the following
facts:2)

1. A base is optimal with respect to a given weight vector if and only if it cannot
be improved by an elementary exchange, which means a modification of a
base B to another base (B \ {u}) ∪ {v} with u in B and v not in B. Thus
the “local optimality” with respect to elementary exchanges guarantees the
global optimality. Moreover, an optimal base can be found by the so-called
greedy algorithm, which may be compared to the steepest descent algorithm
in nonlinear optimization;

2. Given a pair of matroids on a common ground set, the intersection prob-
lem is to find a common independent set of maximum cardinality. Edmonds’
intersection theorem is a min-max duality theorem that characterizes the max-
imum cardinality as the minimum of a submodular function defined by the
rank functions of the matroids.

With the above facts it is natural to think of matroidal structure as a discrete
or combinatorial analogue of convexity. The connection of matroidal structure to

2)More specific account of these facts will be given in §1.3.
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convexity was formulated in the early 1980s as a relationship between submodu-
lar functions and convex functions. It was shown by Frank that Edmonds’ inter-
section theorem can be rewritten as a separation theorem for a pair of submod-
ular/supermodular functions, with an integrality (discreteness) assertion for the
separating hyperplane in the case of integer-valued functions. Another reformula-
tion of Edmonds’ intersection theorem is Fujishige’s Fenchel-type min-max duality
theorem for a pair of submodular/supermodular functions, again with an integrality
assertion in the case of integer-valued functions. A precise statement, beyond anal-
ogy, about the relationship between submodular functions and convex functions was
made by Lovász: A set function is submodular if and only if the so-called Lovász
extension of that set function is convex. These results led to the recognition that
the the essence of the duality for submodular/supermodular functions consists in
the discreteness (integrality) assertion in addition to the duality for convex/concave
functions. Namely,

Duality for submodular functions = Convexity + Discreteness.

Such developments notwithstanding, our understanding of convexity in dis-
crete optimization seems to be only partial. In convex programming, a convex ob-
jective function is minimized over a convex feasible region, which may be described
by a system of inequalities in (other) convex functions. In matroid optimization
explained above, the objective function is restricted to be linear and the feasible
region is described by a system of inequalities using submodular functions. This
means that the convexity argument for submodular functions apply to the con-
vexity of feasible regions and not to the convexity of objective functions. In the
literature, however, we can find a number of nice structural results on discrete op-
timization of nonlinear objective functions. For example, the minimum-cost flow
problem with a separable convex cost function admits optimality criteria similar to
those for linear arc costs (Minoux [131] and others), and this can be carried over
to the submodular flow problem with a separable convex cost function (Fujishige
[65]). Minimization of a separable convex function over a base polyhedron also
admits a local optimality criterion with respect to elementary exchanges (Fujishige
[60], Girlich–Kowaljow [78], Groenevelt [81]). This fact is used in the literature of
resource allocation problems (Ibaraki–Katoh [93], Hochbaum [90], Hochbaum–Hong
[91], Girlich–Kovalev–Zaporozhets [77]). The convexity argument concerning sub-
modular functions, however, does not help us understand these results in relation
to convex analysis. We are thus waiting for a more general theoretical framework
for discrete optimization that can be compared to convex analysis for continuous
optimization.

“Discrete Convex Analysis” is aimed at establishing a general theoretical
framework for solvable discrete optimization problems by means of a combination
of the ideas in continuous optimization and combinatorial optimization. The theo-
retical framework of convex analysis is adapted to discrete settings and the math-
ematical results in matroid/submodular function theory are generalized. Viewed
from the continuous side, the theory can be classified as a theory of convex func-
tions f : Rn → R that have additional combinatorial properties. Viewed from the
discrete side, it is a theory of discrete functions f : Zn → Z that enjoy certain nice
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properties comparable to convexity.3) Symbolically,

Discrete Convex Analysis = Convex Analysis + Matroid Theory.

The theory puts emphasis on duality and conjugacy with a view to providing a
novel duality framework for nonlinear integer programming. It may be in order to
mention that the present theory extends the direction set forth by J. Edmonds, A.
Frank, S. Fujishige, and L. Lovász (see §1.1.2), but it is rather independent of the
convexity arguments in the theories of greedoids, anti-matroids, convex geometries,
and oriented matroids (Björner–Las Vergnas–Sturmfels–White–Ziegler [16], Korte–
Lovász–Schrader [114]).

Two convexity concepts, called L-convexity and M-convexity, play primary
roles in the present theory. L-convex functions and M-convex functions are both
(extensible to) convex functions, and they are conjugate to each other through a
discrete version of the Legendre–Fenchel transformation. L-convex functions and M-
convex functions generalize, respectively, the concepts of submodular set functions
and base polyhedra. It is noted that “L” in “L-convexity” stands for “Lattice” and
“M” in “M-convexity” for “Matroid.”

1.1.2 History

This section is devoted to an account of the history of discrete convex functions
in matroid theory that lead to L-convex and M-convex functions (see Table 1.1).
There are, however, many other previous and recent studies on discrete convexity
outside the literature of matroid (Hochbaum–Shamir–Shanthikumar [92], Ibaraki–
Katoh [93], Kindler [112], Miller [130], and so on).

The concept of matroids was introduced by H. Whitney [218] in 1935, together
with the equivalence between submodularity of rank functions and exchange prop-
erty of independent sets. This equivalence is the germ of the conjugacy between
L-convex and M-convex functions in the present theory of discrete convex analysis.

In the late 1960s, J. Edmonds found a fundamental duality theorem on the
intersection problem for a pair of (poly)matroids. This theorem, Edmonds’ inter-
section theorem, shows a min-max relation between the maximum of a common
independent set and the minimum of a submodular function derived from the rank
functions. The famous article of Edmonds [44] convinced us of the fundamental
role of submodularity in discrete optimization. Analogies of submodular functions
to convex functions and to concave functions were discussed at the same time. The
min-max relation supported the analogy to convex functions, whereas some other
facts pointed to concave functions. No unanimous conclusion was reached at this
point.

The relationship between submodular functions and convex functions was
made clear in the early 1980s through the works of A. Frank, S. Fujishige, and
L. Lovász, which have been described already in §1.1.1 but is repeated here in view
of its importance. The fundamental relationship between submodular functions
and convex functions, due to Lovász [123], says that a set function is submodular

3)Notation Z means the set of all integers, and Zn the set of n-dimensional integer vectors.



“sidca00siammain”
2003/9/23
page 6

6 Chapter 1. Introduction to the Central Concepts

Table 1.1. History (matroid and convexity)

Year (ca.) Author Result
1935 Whitney [218] axioms of matroid

exchange property
⇔ submodularity

1965 Edmonds [44] polymatroid
polyhedral method
intersection theorem

1975 weighted matroid intersection
Edmonds [45]
Lawler [118]
Tomizawa–Iri [201] potential
Iri–Tomizawa [96] potential
Frank [54] weight splitting

1982 relationship to convexity
Frank [55] discrete separation theorem
Fujishige [62] Fenchel-type duality
Lovász [123] Lovász (linear) extension

1990 Dress–Wenzel [41] [42] valuated matroid
axiom, greedy algorithm

Favati–Tardella [49] integrally convex function
1995 Murota [135] [139] valuated matroid intersection

Murota [137] [140] L-/M-convex function
Fenchel-type duality
separation theorem

Murota–Shioura [151] M\-convex function
2000 Fujishige–Murota [68] L\-convex function

Murota–Shioura [152] polyhedral L-/M-convex function
Murota–Shioura [156], [157] continuous L-/M-convex function

if and only if the Lovász extension of that function is convex. Reformulations of
Edmonds’ intersection theorem into a separation theorem for a pair of submod-
ular/supermodular functions by Frank [55] and a Fenchel-type min-max duality
theorem by Fujishige [62] indicate similarity to convex analysis. The discrete math-
ematical content of these theorems, which cannot be captured by the relationship of
submodularity to convexity, lies in the integrality assertion for integer-valued sub-
modular/supermodular functions. Further analogy to convex analysis such as sub-
gradients was conceived by Fujishige [63]. These developments in the 1980s led us to
the understanding that (i) submodularity should be compared to convexity, not to
concavity, and (ii) the essence of the duality for a pair of submodular/supermodular
functions lies in the discreteness (integrality) assertion in addition to the duality
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for convex/concave functions:

(i) submodular functions ' convex functions,
(ii) duality for submodular functions ' convexity + discreteness.

A remark is in order here, although it involves technical terminology from convex
analysis. The Lovász extension of a submodular set function is a convex function,
but it is bound to be positively homogeneous (f(λx) = λf(x) for λ ≥ 0). As a matter
of fact, it coincides with the support function of the base polyhedra associated
with the submodular function. This suggests that the convexity arguments on
submodularity deal with a restricted class of convex functions, namely, the class of
support functions of convex sets. The relationship of submodular set functions to
convex functions summarized in (i) and (ii) above is generalized to the full extent
by the concept of L-convex functions in the present theory.

Addressing the issue of local vs global optimality for functions defined on
integer lattice points, P. Favati and F. Tardella [49] came up with the concept
of integrally convex functions in 1990. This concept successfully captures a fairly
general class of functions on integer lattice points, for which a local optimality
implies the global optimality. Moreover, the class of submodular integrally convex
functions (i.e., integrally convex functions that are submodular on integer lattice
points) was considered as a subclass of integrally convex functions. It turns out
that this concept is equivalent to a variant of L-convex functions, called L\-convex
functions, in the present theory.

We have so far seen major milestones on the road towards L-convex functions,
and are now turning to M-convex functions.

A weighted version of the matroid intersection problem was introduced by
Edmonds [44]. The problem is to find a maximum weight common independent set
(or a common base) with respect to a given weight vector. Efficient algorithms for
this problem were developed in the 1970s by Edmonds [45], Lawler [118], Tomizawa–
Iri [201], and Iri–Tomizawa [96] on the basis of a nice optimality criterion in terms
of dual variables. The optimality criterion of Frank [54] in terms of weight splitting
can be thought of as a version of such optimality criterion using dual variables.
The weighted matroid intersection problem was generalized to the polymatroid
intersection problem as well as to the submodular flow problem. It should be noted,
however, that in all of these generalizations the weighting remained to be linear or
separable convex.

The concept of valuated matroids, introduced by Dress and Wenzel [41], [42]
in 1990, provides a nice framework of nonlinear optimization on matroids. A val-
uation of a matroid is a nonlinear and nonseparable function of bases satisfying
a certain exchange axiom. It was shown by Dress and Wenzel that a version of
greedy algorithm works for maximizing a matroid valuation, and this property in
turn characterizes a matroid valuation. Not only the greedy algorithm but the inter-
section problem extends to valuated matroids. The valuated matroid intersection
problem, introduced by Murota [135], is to maximize the sum of two valuations.
This generalizes the weighted matroid intersection problem since linear weighting
is a special case of matroid valuation. Optimality criteria such as weight splitting
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as well as algorithms for the weighted matroid intersection are generalized to the
valuated matroid intersection (Murota [136]). Analogy of matroid valuations to
concave functions resulted in a Fenchel-type min-max duality theorem for matroid
valuations (Murota [139]). This Fenchel-type duality is not a generalization nor a
special case of Fujishige’s Fenchel-type duality for submodular functions, but these
two can be generalized into a single min-max equation, which is the Fenchel-type
duality theorem in the present theory.

A further analogy of valuated matroids to concave functions led to the concept
of M-convex/concave functions in Murota [137], 1996. M-convexity is a concept of
“convexity” for functions defined on integer lattice points in terms of an exchange
axiom, and affords a common generalization of valuated matroids and (integral)
polymatroids. A valuated matroid can be identified with an M-concave function
defined on {0, 1}-vectors, and the base polyhedron of an integral polymatroid is
a synonym for a {0,+∞}-valued M-convex function. The valuated matroid in-
tersection problem and the polymatroid intersection problem are unified into the
M-convex intersection problem. The Fenchel-type duality theorem for matroid val-
uations is generalized for M-convex functions, and the submodular flow problem to
the M-convex submodular flow problem (Murota [142]), which involves an M-convex
function as a nonlinear cost. The nice optimality criterion using dual variables sur-
vives in this generalization. Thus, M-convex functions yield fruitful generalizations
of many important optimization problems on matroids.

The two independent lines of developments, namely, the convexity argument
for submodular functions in the early 1980s and that for valuated matroids and
M-convex functions in the early nineties, were merged into a unified framework of
“Discrete Convex Analysis,” advocated by Murota [140] in 1998. The concept of
L-convex functions was introduced as a generalization of submodular set functions.
L-convex functions form a conjugate class of M-convex functions with respect to
the Legendre–Fenchel transformation. This completes the picture of conjugacy
advanced by Whitney (1935) as the equivalence between submodularity of the rank
function of a matroid and exchange property of independent sets of a matroid. The
duality theorems carry over to L-convex and M-convex functions. In particular, the
separation theorem for L-convex functions is a generalization of Frank’s separation
theorem for submodular functions.

Ramifications of the concepts of L- and M-convexity followed. M\-convex func-
tions4), introduced by Murota–Shioura [151], are essentially equivalent to M-convex
functions, but are sometimes more convenient. For example, a convex function in
one variable, when considered only for integer values of the variable, is an M\-convex
function that is not M-convex. L\-convex functions, due to Fujishige–Murota [68],
are an equivalent variant of L-convex functions. It turned out that L\-convex func-
tions are exactly the same as submodular integrally convex functions that had been
introduced by Favati–Tardella (1990) in their study of local vs global optimality.

The success of polyhedral methods in combinatorial optimization naturally sug-
gests the possibility of polyhedral versions of L- and M-convex functions. This idea
was worked out by Murota–Shioura [152] with the introduction of the concepts of

4)“M\-convex” should be read “M-natural-convex,” and similarly for “L\-convex.”



“sidca00siammain”
2003/9/23
page 9

1.1. Aim and History of Discrete Convex Analysis 9

L- and M-convexity for polyhedral functions (piecewise linear functions in real vari-
ables). Those convexity concepts were defined also for quadratic functions (Murota–
Shioura [155]) and for closed convex functions (Murota–Shioura [156], [157]).

We conclude this section with a remark on a subtle point of the relationship
between submodularity and convexity. From the discussion in the early 1980s we
have agreed that submodularity should be compared to convexity. This statement
is certainly true for set functions. When it comes to functions on integer points,
however, we need to be careful. As a matter of fact, an M\-concave function is
submodular and concave-extensible (Theorems 6.19 and 6.42), whereas an L\-convex
function is submodular and convex-extensible (Theorem 7.20). This shows that
submodularity and convexity are mutually independent properties for functions on
integer points. It is undoubtedly true, however, that submodularity is essentially
related to discrete convexity.


