Bifurcation Theory for Hexagonal Agglomeration in Economic Geography

Kazuo Murota (室田一雄)

Joint work with

Kiyohiro Ikeda (池田清宏)

1

Southern Germany

Christaller 1933

2

Christaller's Systems (Central Place Theory)

k = 3 system (market principle) k = 4 system (traffic principle)

k = 7 system (administrative principle)

Bénard Convection in Fluid Dynamics

Hexagonal tessellation

Successful math analysis by

group-theoretic bifurcation theory (群論的分岐理論)

Koschmieder (1974) Benard convection, Adv in Chemical Physics

Bifurcation Theory for Hexagonal Agglomeration in Economic Geography

Part 1: (background) Economic Geography Part 2: (result) Hexagonal Agglomeration Part 3: (methodology)

Group-Theoretic Bifurcation Theory

Part 1.

Economic Geography

Economic Geography (経済地理学)

von Thünen (1826): von Thünen Ring Christaller (1933), Lösch (1940): Central Place Theory (中心地理論)

New Economic Geography (新経済地理学)

Krugman (1991): Increasing returns and economic geography

Fujita, Krugman, Venables (1999): The Spatial Economy: Cities, Regions, and International Trade (空間経済学:都市・地域・国際貿易の新しい分析)

Fujita (2010): The evolution of spatial economics: from Thünen to the New Economic Geography

Southern Germany

Christaller 1933

8

Christaller's Systems (Central Place Theory)

Christaller's k = 3 system Christaller's k = 4 system

Christaller's k = 7 system

Lösch's Hexagons

10

Economic Geography / Central Place Theory

- descriptive / normative approach
- no mechanism (micro-economic, mathematical)

New Econ. Geography / Spatial Economics

- micro-economic mechanism

core-periphery model: transport cost, market equilibrium, population migration

Our Study

- mathematical mechanism pattern formation, bifurcation

economic modeling

> spatial platform

Core–Periphery Model

An economy with n places: $i = 1, \ldots, n$

- **Two industrial sectors:**
- agriculture: perfectly competitive, ...
- manufacturing: imperfectly competitive,

transport cost, increasing returns, ···

- Two types of labour:
- farmers: immobile
- workers: mobile

.

Core-Periphery Model

Market equilibrium (short-run)

Given: λ_i : population in place $i \ (=1,2,\ldots,n)$

 τ : transport cost parameter

• Population migration (long-run) $rac{d\lambda_i}{dt} = oxed{F_i(\lambda, au)} \quad i=1,\ldots,n$

e.g.: Replicator dynamics (Krugman, 1991) $\overline{F_i(\lambda, \tau)} = (\omega_i(\lambda, \tau) - \overline{\omega}(\lambda, \tau))\lambda_i, \qquad i = 1, \dots, n$ - Market equil \longrightarrow real wave $\omega_i = \omega_i(\lambda, \tau)$

 $\begin{array}{ll} - \mbox{ Market equil.} \implies & \mbox{real wage } \omega_i = \omega_i(\lambda,\tau) \\ - \mbox{ Average real wage } \overline{\omega} = \sum_{i=1}^n \lambda_i \omega_i \end{array}$

Two-Place Economy

$$\lambda_1+\lambda_2=1,\ \lambda_1,\lambda_2\geq 0$$

transport cost: $T = 1/(1 - \tau)$

$$\begin{split} Y_1 &= \mu \lambda_1 w_1 + \frac{1-\mu}{2}, \qquad Y_2 = \mu \lambda_2 w_2 + \frac{1-\mu}{2} \\ G_1 &= [\lambda_1 w_1^{1-\sigma} + \lambda_2 (w_2 T)^{1-\sigma}]^{\frac{1}{1-\sigma}} \\ G_2 &= [\lambda_1 (w_1 T)^{1-\sigma} + \lambda_2 w_2^{1-\sigma}]^{\frac{1}{1-\sigma}} \\ w_1 &= [Y_1 G_1^{\sigma-1} + Y_2 G_2^{\sigma-1} T^{1-\sigma}]^{\frac{1}{\sigma}} \\ w_2 &= [Y_1 G_1^{\sigma-1} T^{1-\sigma} + Y_2 G_2^{\sigma-1}]^{\frac{1}{\sigma}} \\ \omega_1 &= w_1 G_1^{-\mu}, \qquad \omega_2 = w_2 G_2^{-\mu} \end{split}$$

$$rac{d\lambda_1}{dt}=(\omega_1(\lambda, au)-\omega_2(\lambda, au))\lambda_1\lambda_2$$

Two-Place Economy

New Econ. Geography: State-of-the-Art

- Micro-economic model:

core-periphery \rightarrow refinements

- Spatial platform:

two-place \rightarrow long narrow, racetrack

Krugman (1996): The Self-organizing Economy I have demonstrated the emergence of a regular lattice only for

a one-dimensional economy, but I have no doubt that a better mathematician could show that a system of hexagonal market areas will emerge in two dimensions.

Long Narrow Economy Fujita, Mori (1997): **Regional Sci Urban Econ** Structural stability and evolution of urban systems Fujita, Krugman, Mori (1999): Euro Econ Review On the evolution of hierarchical urban systems **Racetrack Economy** Krugman (1993): **Euro Econ Review** On the number and location of cities Mossay (2003): **Regional Sci Urban Econ** Increasing returns and heterogeneity in a spatial economy Picard, Tabuchi (2010): **Economic Theory** Self-organized agglomerations and transport costs Tabuchi, Thisse (2011): J. Urban Economics A new economic geography model of central places

Hexagonal Agglomeration

Discretization for Southern Germany

Initial Stages (high transport cost)

20

Final Stages (low transport cost)

Numerical Analysis for Southern Germany population vs transport cost

(Forslid–Ottaviano model (2003), logit choice function)

Modeling by Periodic Finite Hexagonal Lattice

(Forslid–Ottaviano model (2003), logit choice function)

Emergence of Central Places (2)

Emergence of Central Places (3)

Summary of Our Results

Christaller's	size n	Mult M
k = 3 (market)	$3 \times$	2
k = 4 (traffic)	2~ imes	3
k = 7 (administrative)	7~ imes	12

Lösch's D	size n	Mult M
9 (traffic-like)	$3 \times$	6
12 (market-like)	$6 \times$	6
13 (admin-like)	13~ imes	12
16 (traffic-like)	4 $ imes$	6
19 (admin-like)	19~ imes	12
21 (admin-like)	21~ imes	12
$25~{\sf (traffic-like)}$	5~ imes	6

Lattice Economy

Ikeda, Murota, Akamatsu, Kono, Takayama, Sobhaninejad, Shibasaki (2010):

Self-organizing hexagons in economic agglomeration: core-periphery models and central place theory, METR 2010-28, U. Tokyo. **Discovery of hexagonal patterns (numerical, theoretical)**

- Takayama, Akamatsu (2010): 土木計画学研究・論文集.
- Ikeda, Murota, Akamatsu (2012): Self-organization of Lösch's hexagons in economic · · · , Int. J. Bifurcation & Chaos.
- Ikeda, Murota, Akamatsu, Kono, Takayama (2014): Self-organization of hexagonal ..., J. Economic Behav. & Organiz.
- Ikeda, Murota (2014):

Bifurcation Theory for Hexagonal Agglomeration in Economic Geography. Systematic presentation of the theory

Group-Theoretic Bifurcation Theory

Group-theoretic Bifurcation Theory

• Sattinger (1979):

Group Theoretic Methods in Bifurcation Theory. (Lecture Notes in Mathematics)

• Golubitsky, Schaeffer (1985):

Singularities and Groups in Bifurcation Theory, Vol. 1

• Golubitsky, Stewart, Schaeffer (1988):

Singularities and Groups in Bifurcation Theory, Vol. 2

Bifurcation Analysis of Two-Place Economy

poplutation $\lambda = (\lambda_1, \lambda_2)$, transport cost au

$$F(\lambda, au) = egin{bmatrix} F_1(\lambda_1,\lambda_2, au) \ F_2(\lambda_1,\lambda_2, au) \end{bmatrix} = 0$$

$$egin{aligned} F_1(\lambda_1,\lambda_2, au) &= & (\omega_1(\lambda_1,\lambda_2, au) - \overline{\omega}(\lambda_1,\lambda_2, au))\lambda_1 \ F_2(\lambda_1,\lambda_2, au) &= & (\omega_2(\lambda_1,\lambda_2, au) - \overline{\omega}(\lambda_1,\lambda_2, au))\lambda_2 \end{aligned}$$

average real wage $\overline{\omega}(\lambda_1,\lambda_2, au) = \lambda_1\omega_1 + \lambda_2\omega_2$

Symmetry:
$$F_2(\lambda_1, \lambda_2, \tau) = F_1(\lambda_2, \lambda_1, \tau)$$

Formulation of Symmetry

Symmetry:
$$F_2(\lambda_1, \lambda_2, \tau) = F_1(\lambda_2, \lambda_1, \tau)$$

 $\iff \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_1(\lambda, \tau) \\ F_2(\lambda, \tau) \end{bmatrix} = F\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \lambda, \tau \right)$

Equivariance: $T(g)F(\lambda,\tau) = F(T(g)\lambda,\tau), \quad g \in G$ $G = \{e,s\}$: group, $s:(1,2) \mapsto (2,1),$ $T(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad T(s) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reduction to Bifurcation Equation

Critical point $(\lambda_c, \tau_c) = (1/2, 1/2, \tau_c)$ at some $\tau = \tau_c$ New variable $w = \lambda_1 - \lambda_2$; $\widetilde{f} = \tau - \tau_c$

$$\lambda_1=rac{1+w}{2}, \qquad \lambda_2=rac{1-w}{2}$$

Bifurcation equation:

$$egin{aligned} \widetilde{F}(w,\widetilde{f}) &= F_1\left(rac{1+w}{2},rac{1-w}{2},\widetilde{f}
ight) - F_2\left(rac{1+w}{2},rac{1-w}{2},\widetilde{f}
ight) \ &= w[A\,\widetilde{f}+Bw^2+\cdots] = 0 \end{aligned}$$

\Downarrow Two kinds of solutions (equilibria):

$$\left\{ egin{array}{ll} w=0, & ext{trivial equilibria } (\lambda_1=\lambda_2), \ \widetilde{f}=-rac{B}{A}w^2+\cdots & ext{bifurcating equilibria } (\lambda_1
eq\lambda_2) \end{array}
ight.$$

Two-Place Economy

Methodological Characteristics

Group-theoretic method shows:

- (1) Reduction to bifurcation equation dimension (# vars/eqns), choice of vars
- (2) Possible bifurcating equilibria symmetry/pattern (e.g., Christaller's systems)
- (3) Generic (structural) properties under symmetry, independent of individual models and parameters structural degeneracy vs accidental coincidence

Does not capture:

- (1) Specific value of $\tau_{\rm c}$
- (2) Specific values of A, B, etc.
- (3) Stability of equilibria

conomic modeling

Equivariance for Hexagonal Lattice

$$T(g)F(\lambda, au)=F(T(g)\lambda, au), \quad g\in G$$

$$G = \cdots$$

$$T(g) = \cdots$$

Symmetry of 3 x 3 Lattice

 $G = \langle r, s, p_1, p_2
angle$

rotation r

translation p_1

translation p_2

Representation Matrices T (n = 3)

Equivariance for Hexagonal Lattice

$$T(g)F(\lambda, au)=F(T(g)\lambda, au), \quad g\in G$$

$$G = \langle r, s, p_1, p_2 \rangle$$

Symmetry of $n \times n$ Lattice

- r: rotation ($\pi/3$ rad)
- s: reflection
- p_1, p_2 : translations

 $egin{aligned} G &= \langle r, s, p_1, p_2
angle \ &= & \mathrm{D}_6 \ltimes \left(\mathbb{Z}_n imes \mathbb{Z}_n
ight) \end{aligned}$

$$egin{array}{rll} r^6 &=& s^2 = (rs)^2 = p_1{}^n = p_2{}^n = e, & p_2p_1 = p_1p_2, \ rp_1 &=& p_1p_2r, & rp_2 = p_1^{-1}r, & sp_1 = p_1s, & sp_2 = p_1^{-1}p_2^{-1}s \end{array}$$

Subgroups for Christaller's Systems

Symmetry: $G = \langle r, s, p_1, p_2 \rangle = \mathrm{D}_6 \ltimes (\mathbb{Z}_n \times \mathbb{Z}_n)$

Partial Symmetry:

Reduction to Bifurcation Equation

Liapunov-Schmidt reduction

eliminates variables by implicit function thm

Which variables remain?

 $J_{\rm c}$: Jacobian at critical point

dim Ker (J_c) = dim of bifur.eqn (# eqns/vars)

Ker(J_c): invariant subspace \leftrightarrow irred representation (generically)

dim bifur.eqn = dim irred rep in T

 $= 2, 3, 6, 12 \quad [\text{NOT: 4}]$ Bifurcation eqn: $\tilde{F}(\lambda, \tau) = 0$ Equivariance: $\tilde{T}(g)\tilde{F}(\lambda, \tau) = \tilde{F}(\tilde{T}(g)\lambda, \tau), \quad g \in G$

Group Representation

Representation of *G* is a mapping $T: G \to \operatorname{GL}(N, \mathbb{R})$:

$$T(gh)=T(g)T(h), \quad g,h\in G.$$

Invariant subspace: $w \in W \Rightarrow T(g)w \in W$ ($\forall g \in G$)

Irreducible rep: does not have invariant subspaces

A finite family determined by G

Decomposition into irred reps: (essent.) unique for T

$$Q^{-1}TQ = T^{(1)} \oplus T^{(2)} \oplus T^{(3)} \oplus \cdots$$

Irreducible Decomposition (n = 3)

45

Procedure of Group-th. Bifurcation Analysis

- Find symmetry group G & representation T
- Enumerate all irred reps μ of G

1,2,3,4,6,12-dim (by method of little groups)

- **Decompose** T into irred reps μ
- For each irred rep μ :
 - A: Derive and solve bifurcation eqn to find bifur. solution and see the symmetry
 - **B: Apply equivariant branching lemma** to see the existence of specified symmetry

\boldsymbol{n}	dim ${f 1}$	dim2	dim 3	dim 4	dim 6	dim 12
6m	4	4	4	1	2n-6	$(n^2 - 6n + 12)/12$
$6m\pm 1$	4	2	0	0	2n-2	$(n^2 - 6n + 5)/12$
$6m\pm 2$	4	2	4	0	2n-4	$(n^2 - 6n + 8)/12$
$6m\pm 3$	4	4	0	1	2n-4	$(n^2 - 6n + 9)/12$
• dim 6	exist for $n \ge 3$ • dim 12 exist for $n \ge 6$			exist for $n \ge 6$		

\boldsymbol{n}	dim 1	dim 2	dim 3	dim 4	dim 6	dim 12
3	4	4	0	1	2	0
6	4	4	4	1	6	1
7	4	2	0	0	2	1

3-dim Irreducible Rep

$$egin{aligned} r: & (w_1,w_2,w_3) \mapsto (w_3,w_1,w_2) \ s: & (w_1,w_2,w_3) \mapsto (w_3,w_2,w_1) \ p_1: & (w_1,w_2,w_3) \mapsto (-w_1,w_2,-w_3) \ p_2: & (w_1,w_2,w_3) \mapsto (w_1,-w_2,-w_3) \end{aligned}$$

(3;+,+)

Bifurcation Equations for M = 3 (1)

$$F_i(w_1,w_2,w_3,\widetilde{ au}) = 0 \quad (i=1,2,3)$$

Equivariance conditions:

$$\begin{array}{rcl} r: & F_3(w_1,w_2,w_3)=F_1(w_3,w_1,w_2)\\ & F_1(w_1,w_2,w_3)=F_2(w_3,w_1,w_2)\\ & F_2(w_1,w_2,w_3)=F_3(w_3,w_1,w_2)\\ s: & F_3(w_1,w_2,w_3)=F_1(w_3,w_2,w_1)\\ & F_2(w_1,w_2,w_3)=F_2(w_3,w_2,w_1)\\ & F_1(w_1,w_2,w_3)=F_3(w_3,w_2,w_1)\\ p_1: & -F_1(w_1,w_2,w_3)=F_1(-w_1,w_2,-w_3)\\ & F_2(w_1,w_2,w_3)=F_2(-w_1,w_2,-w_3)\\ & -F_3(w_1,w_2,w_3)=F_3(-w_1,w_2,-w_3)\\ p_2: & F_1(w_1,w_2,w_3)=F_1(w_1,-w_2,-w_3)\\ & -F_2(w_1,w_2,w_3)=F_2(w_1,-w_2,-w_3)\\ & -F_3(w_1,w_2,w_3)=F_3(w_1,-w_2,-w_3)\\ \end{array}$$

Bifurcation Equations for M = 3 (2)

Conditions connecting F_2 to (F_1, F_3) : $F_1(w_1, w_2, w_3) = F_2(w_3, w_1, w_2)$ $F_3(w_1, w_2, w_3) = F_2(w_2, w_3, w_1)$

Conditions on F_2 :

$$egin{aligned} F_2(w_1,w_2,w_3) &= F_2(-w_1,w_2,-w_3) \ &-F_2(w_1,w_2,w_3) &= F_2(w_1,-w_2,-w_3) \ &F_2(w_1,w_2,w_3) &= F_2(w_3,w_2,w_1) \ &\downarrow \ F_2 &= w_2 \sum_{a=0}^{} \sum_{b=0}^{} \sum_{c=0}^{} A_{2a,2b+1,2c}(\widetilde{ au}) \, w_1^{2a} w_2^{2b} w_3^{2c} \ &+ w_1 w_3 \sum_{a=0}^{} \sum_{b=0}^{} \sum_{c=0}^{} A_{2a+1,2b,2c+1}(\widetilde{ au}) \, w_1^{2a} w_2^{2b} w_3^{2c} \end{aligned}$$

Bifurcation Equations for M = 3 (3)

$$egin{aligned} F_2 &= egin{aligned} w_2 \sum \sum \sum A_{2a,2b+1,2c}(\widetilde{ au}) \, w_1^{\,2a} w_2^{\,2b} w_3^{\,2c} \ &+ egin{aligned} &+ egin{aligned} w_1 w_3 \sum \sum \sum A_{2a+1,2b,2c+1}(\widetilde{ au}) \, w_1^{\,2a} w_2^{\,2b} w_3^{\,2c} \ &F_1 &= F_2(w_3,w_1,w_2), &F_3 &= F_2(w_2,w_3,w_1) \end{aligned}$$

Trivial solution: $w_1 = w_2 = w_3 = 0$ Bifurcating solution: $w_1 = w_2 = w_3 \neq 0$

$$0 = \sum \sum \sum A_{2a,2b+1,2c}(\tilde{\tau}) w_1^{2(a+b+c)} + w_1 \sum \sum \sum A_{2a+1,2b,2c+1}(\tilde{\tau}) w_1^{2(a+b+c)} \approx A\tilde{\tau} + Bw_1 \rightarrow w_1 \approx -(A/B)\tilde{\tau}$$

Symmetry of $(w,w,w)=\langle r,s,p_1^2,p_2^2\rangle$

Bifurcation Equations for M = 3 (5)

$$egin{array}{rcl} F_2 &=& oldsymbol{w_2} \sum \sum \sum A_{2a,2b+1,2c}(\widetilde{ au}) \, w_1^{\,2a} w_2^{\,2b} w_3^{\,2c} \ &+& oldsymbol{w_1} w_3 \sum \sum \sum A_{2a+1,2b,2c+1}(\widetilde{ au}) \, w_1^{\,2a} w_2^{\,2b} w_3^{\,2c} \ F_1 &=& F_2(w_3,w_1,w_2), \qquad F_3 = F_2(w_2,w_3,w_1) \end{array}$$

Another bifurcating solution: $w_2
eq 0$, $w_1 = w_3 = 0$

$$egin{aligned} 0 &= \sum A_{0,2b+1,0}(\widetilde{ au}) \, w_2{}^{2b} &pprox & A\widetilde{ au} + B w_2{}^2 \ &\longrightarrow & \widetilde{ au} pprox - (B/A) B w_2{}^2 \end{aligned}$$

12-dim Irreducible Rep (complex variables) $(12; k, \ell)$ $(1 \le \ell \le k-1, 2k+\ell \le n-1)$ $r: egin{bmatrix} z_1 \ z_2 \ z_3 \ z_4 \ z_5 \ z_6 \end{bmatrix} \mapsto egin{bmatrix} ar{z}_3 \ ar{z}_1 \ ar{z}_2 \ ar{z}_5 \ ar{z}_6 \ ar{z}_4 \end{bmatrix} \qquad s: egin{bmatrix} z_1 \ z_2 \ z_3 \ z_4 \ z_5 \ z_6 \end{bmatrix} \mapsto egin{bmatrix} z_4 \ z_5 \ ar{z}_6 \ ar{z}_4 \end{bmatrix}$ $p_{1}: \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \\ z_{5} \\ z_{6} \end{bmatrix} \mapsto \begin{bmatrix} \omega^{k} z_{1} \\ \omega^{\ell} z_{2} \\ \omega^{-k-\ell} z_{3} \\ \omega^{k} z_{4} \\ \omega^{\ell} z_{5} \\ \omega^{-k-\ell} z_{6} \end{bmatrix} \qquad p_{2}: \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \\ z_{5} \\ z_{6} \end{bmatrix} \mapsto \begin{bmatrix} \omega^{\ell} z_{1} \\ \omega^{-k-\ell} z_{2} \\ \omega^{k} z_{3} \\ \omega^{-k-\ell} z_{4} \\ \omega^{k} z_{5} \\ \omega^{\ell} z_{6} \end{bmatrix}$

 $\omega = \exp(\mathrm{i} 2\pi/n)$

Bifurcation Equations for M = 12 (1)

$$F_i(z_1,\ldots,z_6)=0, \quad i=1,\ldots,6; \qquad z_j\in {
m C}$$

$$\begin{array}{ll} r: & \overline{F_3(z_1,z_2,z_3,z_4,z_5,z_6)} = F_1(\overline{z}_3,\overline{z}_1,\overline{z}_2,\overline{z}_5,\overline{z}_6,\overline{z}_4) \\ & \overline{F_1(z_1,z_2,z_3,z_4,z_5,z_6)} = F_2(\overline{z}_3,\overline{z}_1,\overline{z}_2,\overline{z}_5,\overline{z}_6,\overline{z}_4) \\ & \overline{F_2(z_1,z_2,z_3,z_4,z_5,z_6)} = F_3(\overline{z}_3,\overline{z}_1,\overline{z}_2,\overline{z}_5,\overline{z}_6,\overline{z}_4) \\ & \overline{F_5(z_1,z_2,z_3,z_4,z_5,z_6)} = F_4(\overline{z}_3,\overline{z}_1,\overline{z}_2,\overline{z}_5,\overline{z}_6,\overline{z}_4) \\ & \overline{F_6(z_1,z_2,z_3,z_4,z_5,z_6)} = F_5(\overline{z}_3,\overline{z}_1,\overline{z}_2,\overline{z}_5,\overline{z}_6,\overline{z}_4) \\ & \overline{F_4(z_1,z_2,z_3,z_4,z_5,z_6)} = F_6(\overline{z}_3,\overline{z}_1,\overline{z}_2,\overline{z}_5,\overline{z}_6,\overline{z}_4); \end{array}$$

$$s: egin{array}{ll} F_{i+3}(z_1,z_2,z_3,z_4,z_5,z_6) &= F_i(z_4,z_5,z_6,z_1,z_2,z_3) & i=1,2,3, \ F_i(z_1,z_2,z_3,z_4,z_5,z_6) &= F_{i+3}(z_4,z_5,z_6,z_1,z_2,z_3) & i=1,2,3; \end{array}$$

 $p_1: \ \omega_{1i}F_i(z_1,\ldots,z_6)=F_i(\omega_{11}z_1,\ldots,\omega_{16}z_6) \quad i=1,\ldots,6; \ p_2: \ \omega_{2i}F_i(z_1,\ldots,z_6)=F_i(\omega_{21}z_1,\ldots,\omega_{26}z_6) \quad i=1,\ldots,6,$

$$(\omega_{11}, \dots, \omega_{16}) = (\omega^k, \omega^\ell, \omega^{-k-\ell}, \omega^k, \omega^\ell, \omega^{-k-\ell})$$
$$(\omega_{21}, \dots, \omega_{26}) = (\omega^\ell, \omega^{-k-\ell}, \omega^k, \omega^{-k-\ell}, \omega^k, \omega^\ell)$$

Bifurcation Equations for M = 12 (2)

Conditions connecting F_1 to (F_2, \ldots, F_6) :

$$\begin{array}{rcl}F_2(z_1,z_2,z_3,z_4,z_5,z_6)&=&F_1(z_2,z_3,z_1,z_6,z_4,z_5)\\F_3(z_1,z_2,z_3,z_4,z_5,z_6)&=&F_1(z_3,z_1,z_2,z_5,z_6,z_4)\\F_4(z_1,z_2,z_3,z_4,z_5,z_6)&=&F_1(z_4,z_5,z_6,z_1,z_2,z_3)\\F_5(z_1,z_2,z_3,z_4,z_5,z_6)&=&F_1(z_5,z_6,z_4,z_3,z_1,z_2)\\F_6(z_1,z_2,z_3,z_4,z_5,z_6)&=&F_1(z_6,z_4,z_5,z_2,z_3,z_1)\end{array}$$

Conditions on F_1 :

$$\begin{split} F_1(z_1, z_2, \dots, z_6) &= \overline{F_1(\overline{z}_1, \overline{z}_2, \dots, \overline{z}_6)} \\ \omega_{11}F_1(z_1, z_2, \dots, z_6) &= F_1(\omega_{11}z_1, \omega_{12}z_2, \dots, \omega_{16}z_6) \\ \omega_{21}F_1(z_1, z_2, \dots, z_6) &= F_1(\omega_{21}z_1, \omega_{22}z_2, \dots, \omega_{26}z_6) \\ (\omega_{11}, \dots, \omega_{16}) &= (\omega^k, \omega^\ell, \omega^{-k-\ell}, \omega^k, \omega^\ell, \omega^{-k-\ell}) \\ (\omega_{21}, \dots, \omega_{26}) &= (\omega^\ell, \omega^{-k-\ell}, \omega^k, \omega^{-k-\ell}, \omega^k, \omega^\ell) \end{split}$$

Bifurcation Equations for M = 12 (3)

$\langle r, p_1^3 p_2, p_1^{-1} p_2^2 \rangle$ = symmetry of (x, x, x, 0, 0, 0)

Targeted solution: $(z_1, z_2, z_3, z_4, z_5, z_6) = (x, x, x, 0, 0, 0)$

Bifur. eqn:
$$F_i(z_1, z_2, z_3, z_4, z_5, z_6) = 0$$
 $(i = 1, \dots, 6)$
 $\iff F_1(x, x, x, 0, 0, 0) = 0$, $F_1(0, 0, 0, x, x, x) = 0$

Bifurcation Equations for M = 12 (4) For $(k, \ell, n) = (2, 1, 7)$:

JL.

$$egin{aligned} F_1 &= A_1 z_1 + (A_2 \overline{z}_2 \overline{z}_3 + A_3 \overline{z}_1 z_3 + A_4 z_2^2) \ &+ (A_5 z_1^2 \overline{z}_1 + A_6 z_1 z_2 \overline{z}_2 + A_7 z_1 z_3 \overline{z}_3 + A_8 z_1 z_4 \overline{z}_4 \ &+ A_9 z_1 z_5 \overline{z}_5 + A_{10} z_1 z_6 \overline{z}_6 + A_{11} \overline{z}_1 z_2 \overline{z}_3 + A_{12} z_2 z_3^2 \ &+ A_{13} \overline{z}_2^2 z_3 + A_{14} \overline{z}_1^2 \overline{z}_2 + A_{15} \overline{z}_3^3) + \cdots \end{aligned}$$

$$egin{aligned} \hat{F_1}(x,x,x,0,0,0) &= A_1x + (A_2 + A_3 + A_4)x^2 \ &+ (A_5 + A_6 + \cdots + A_{15})x^3 + \cdots \ &pprox x(A ilde{ au} + Bx) \ F_1(0,0,0,x,x,x) &= 0 \ &\longrightarrow x pprox - (A/B) ilde{ au} \end{aligned}$$

Bifurcation Equations for M = 12 (5) For $(k, \ell, n) = (2, 1, 6)$:

$$\begin{array}{rcl} F_1 &=& A_1 z_1 + A_2 \overline{z}_2 \overline{z}_3 + (A_3 z_1^2 \overline{z}_1 + A_4 z_1 z_2 \overline{z}_2 + A_5 z_1 z_3 \overline{z}_3 \\ &\quad + A_6 z_1 z_4 \overline{z}_4 + A_7 z_1 z_5 \overline{z}_5 + A_8 z_1 z_6 \overline{z}_6 + A_9 z_2 \overline{z}_4 z_6 \\ &\quad + A_{10} z_3 \overline{z}_4 z_5 + A_{11} \overline{z}_1 z_2 \overline{z}_6 + A_{12} z_3^2 z_4 + A_{13} \overline{z}_1 \overline{z}_5^2) \\ &\quad + & \left[A_{14} z_4 \overline{z}_6^2 + A_{15} \overline{z}_5 z_6^3 + A_{16} \overline{z}_5 \overline{z}_6^3 + \cdots \right] + \cdots \end{array}$$

$$rac{\Downarrow}{F_1(x,x,x,0,0,0)} = A_1x + A_2x^2 + (A_3 + A_4 + A_5)x^3 + \cdots
onumber \ F_1(0,0,0,x,x,x) = A_{14}x^3 + (A_{15} + A_{16})x^4 + \cdots$$

Two equations in one variable $x \implies$ No solution exists

Bifurcation at 12-fold Critical Point

Irred rep: $(12; k, \ell)$

	$ \gcd(\hat{k}-\hat{\ell},\hat{n}) ot\in 3\mathbb{Z}$	$ig \gcd(\hat{k} - \hat{\ell}, \hat{n}) \in 3\mathbb{Z}$		
	$\hat{D} ot\in 3\mathbb{Z}$	$\hat{D}\in 3\mathbb{Z}$		
GCD-div	traffic-like	market-like		
	(type V)	(type M)		
GCD-div	traffic-like (V)	market-like (M)		
	admin-like (T)	admin-like (T)		
$\hat{k} = rac{k}{ ext{gcd}(k,\ell,n)}, \hat{\ell} = rac{\ell}{ ext{gcd}(k,\ell,n)}, \hat{n} = rac{n}{ ext{gcd}(k,\ell,n)}$				
$rac{{f GCD-div:}}{(\hat k-\hat \ell)~{ m gcd}}$	$(\hat{m k}, \hat{m \ell})$ is divisible by	$\gcd(\hat{k}^2+\hat{k}\hat{\ell}+\hat{\ell}^2,\hat{n})$		

Summary of Our Results (again)

Christaller's	size n	Mult M
k = 3 (market)	$3 \times$	2
k = 4 (traffic)	2~ imes	3
k = 7 (administrative)	7~ imes	12

Lösch's D	size n	Mult M
9 (traffic-like)	$3 \times$	6
12 (market-like)	$6 \times$	6
13 (admin-like)	13~ imes	12
16 (traffic-like)	4 imes	6
19 (admin-like)	19~ imes	12
21 (admin-like)	21~ imes	12
$25~{\sf (traffic-like)}$	5~ imes	6

Group

(i) Associative law: $(g \ h) \ k = g \ (h \ k)$ (ii) \exists identity element e: $e \ g = g \ e = g \ (\forall g \in G)$ (iii) $\forall g \in G, \ \exists h \ (inverse \ of \ g)$: $g \ h = h \ g = e$

Dihedral group D_6

$$egin{aligned} {
m D}_6 &= \langle r,s
angle \; = \; \{e,r,r^2,\ldots,r^5,s,sr,sr^2,\ldots,sr^5\} \ &r^6 &= s^2 = (sr)^2 = e \end{aligned}$$

Semidirect product $G = D_6 \ltimes (\mathbb{Z}_n \times \mathbb{Z}_n)$

- $\mathbb{Z}_n imes \mathbb{Z}_n$ is a normal subgroup of G
- unique representation g = ha ($h \in D_6$, $a \in \mathbb{Z}_n \times \mathbb{Z}_n$)

Assume that rep \tilde{T} is absolutely irreducible and the bifurcation equation is "generic."

For an isotropy subgroup Σ with dim $Fix(\Sigma) = 1$,

there exists a unique smooth solution branch s.t.

 $\Sigma(w) = \Sigma$ for each solution w on the branch.

$$\Sigma(w) = \{g \in G \mid \widetilde{T}(g)w = w\}$$

 $\operatorname{Fix}(\Sigma) = \{w \mid \widetilde{T}(g)w = w \text{ for all } g \in \Sigma\}$