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1 Introduction
Discrete convex analysis [18, 40, 43, 47] aims to establish a general theoretical framework for solv-
able discrete optimization problems by means of a combination of the ideas in continuous optimiza-
tion and combinatorial optimization. The framework of convex analysis is adapted to discrete set-
tings and the mathematical results in matroid/submodular function theory are generalized. Viewed
from the continuous side, it is a theory of convex functions f : Rn → R that have additional combi-
natorial properties. Viewed from the discrete side, it is a theory of discrete functions f : Zn → R or
f : Zn → Z that enjoy certain nice properties comparable to convexity. Symbolically,

Discrete Convex Analysis = Convex Analysis + Matroid Theory.

The theory extends the direction set forth by J. Edmonds [11], A. Frank [16], S. Fujishige [17], and
L. Lovász [34]. The reader is referred to [59] for convex analysis, [8, 32, 60] for combinatorial
optimization, [57, 58, 71] for matroid theory, and [18, 70] for submodular function theory.

Two convexity concepts, called L-convexity and M-convexity, play primary roles. L-convex
functions and M-convex functions are conjugate to each other through the (continuous or discrete)
Legendre–Fenchel transformation. L-convex functions and M-convex functions generalize, respec-
tively, the concepts of submodular set functions and base polyhedra. It is noted that “L” stands for
“Lattice” and “M” for “Matroid.”

The set of all real numbers is denoted by R, and R = R∪ {+∞} and R = R∪{−∞}. The set of all
integers is denoted by Z, and Z = Z ∪ {+∞} and Z = Z ∪ {−∞}. Let V = {1, 2, . . . , n} for a positive
integer n. The characteristic vector of X ⊆ V is denoted by χX ∈ {0, 1}n. For i ∈ V , we write χi for
χ{i}, which is the ith unit vector, and χ0 = 0 (zero vector).

2 Concepts of Discrete Convex Functions
The concepts of L-convex and M-convex functions can be obtained through discretization of two
different characterizations of convex functions.

2.1 Ordinary Convex Functions
We start by recalling the definition of ordinary convex functions. A function f : Rn → R is said to
be convex if

λ f (x) + (1 − λ) f (y) ≥ f (λx + (1 − λ)y) (1)

for all x, y ∈ Rn and for all λ with 0 ≤ λ ≤ 1, where it is understood that the inequality is satisfied if
f (x) or f (y) is equal to +∞. A function h : Rn → R is said to be concave if −h is convex.

A set S ⊆ Rn is called convex if, for any x, y ∈ S and 0 ≤ λ ≤ 1, we have λx + (1 − λ)y ∈ S . The
indicator function of a set S is a function δS : Rn → {0,+∞} defined by

δS (x) =

{
0 (x ∈ S ),
+∞ (x < S ). (2)

∗This is a reproduction of Sections 1 to 6, with minor revisions, of [K. Murota: Recent developments in discrete convex
analysis, Research Trends in Combinatorial Optimization, Bonn 2008 (W. Cook, L. Lovász and J. Vygen, eds.), Springer-
Verlag, Berlin, 2009, Chapter 11, 219–260], prepared as a supplementary reading material for Summer School on Combina-
torial Optimization (September 21–25, 2015) at Hausdorff Institute of Mathematics.
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Then S is a convex set if and only if δS is a convex function.
For a function f : Rn → R ∪ {−∞,+∞} in general, the set

domR f = {x ∈ Rn | f (x) ∈ R}
is called the effective domain of f . A point x ∈ Rn is said to be a global minimum of f if the
inequality f (x) ≤ f (y) holds for every y ∈ Rn. Point x is a local minimum if this inequality holds for
every y in some neighborhood of x. The set of global minima (minimizers) is denoted as

argminR f = {x ∈ Rn | f (x) ≤ f (y) (∀y ∈ Rn)}.
Convex functions are tractable in optimization (or minimization) problems and this is mainly

because of the following properties.

1. Local optimality (or minimality) guarantees global optimality.

2. Duality theorems such as min-max relation and separation hold.

Duality is a central issue in convex analysis, and is discussed in Section 5.
A separable convex function is a function f : Rn → R that can be represented as

f (x) =

n∑

i=1

ϕi(xi), (3)

where x = (xi | i = 1, . . . , n) and ϕi : R→ R (i = 1, . . . , n) are univariate convex functions.

2.2 Discrete Convex Functions
We now consider how convexity concept can (or should) be defined for functions in discrete vari-
ables. It would be natural to expect the following properties of any function f : Zn → R that is
qualified as a “discrete convex function.”

1. Function f is extensible to a convex function on Rn.

2. Local optimality (or minimality) guarantees global optimality.

3. Duality theorems such as min-max relation and separation hold.

Recall that f : Zn → R is said to be convex-extensible if there exists a convex function f :
Rn → R such that f (x) = f (x) for all x ∈ Zn. It is widely understood that convex extensibility
alone does not yield a fruitful theoretical framework, which fact motivates us to introduce L-convex
and M-convex functions. In this section we focus on convex extensibility and local optimality while
deferring duality issues to Section 5. The effective domain and the set of minimizers are denoted
respectively as

domZ f = {x ∈ Zn | f (x) ∈ R},
argminZ f = {x ∈ Zn | f (x) ≤ f (y) (∀y ∈ Zn)}.

2.2.1 Univariate and separable convex functions

The univariate case (n = 1) is simple and straightforward. We may regard a function f : Z → R as
a discrete convex function if

f (x − 1) + f (x + 1) ≥ 2 f (x) (∀x ∈ Z). (4)

This is justified by the following facts.

Theorem 1. A function f : Z→ R is convex-extensible if and only if it satisfies (4).

Theorem 2. For a function f : Z→ R satisfying (4), a point x ∈ domZ f is a global minimum if and
only if it is a local minimum in the sense that

f (x) ≤ min{ f (x − 1), f (x + 1)}.
Theorems 1 and 2 above can be extended in obvious ways to a separable (discrete) convex

function f : Zn → R, which is, by definition, representable in the form of (3) with univariate
functions ϕi : Z→ R having property (4).
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図 1: 離散中点凸性
Figure 1: Discrete midpoint convexity

2.2.2 L-convex functions

We explain the concept of L-convex functions [40] by featuring an equivalent variant thereof, called
L\-convex functions [19] (“L\” should be read “el natural”).

We first observe that a convex function g on Rn satisfies

g(p) + g(q) ≥ g
( p + q

2

)
+ g

( p + q
2

)
(p, q ∈ Rn), (5)

which is a special case of (1) with λ = 1/2. This property, called midpoint convexity, is known to be
equivalent to convexity if g is a continuous function.

For a function g : Zn → R in discrete variables the above inequality does not always make sense,
since the midpoint p+q

2 of two integer vectors p and q may not be integral. Instead we simulate (5)
by

g(p) + g(q) ≥ g
(⌈ p + q

2

⌉)
+ g

(⌊ p + q
2

⌋)
(p, q ∈ Zn), (6)

where, for z ∈ R in general, dze denotes the smallest integer not smaller than z (rounding-up to the
nearest integer) and bzc the largest integer not larger than z (rounding-down to the nearest integer),
and this operation is extended to a vector by componentwise applications, as illustrated in Fig. 1 in
the case of n = 2. We refer to (6) as discrete midpoint convexity [12].

We say that a function g : Zn → R is L\-convex if it satisfies discrete midpoint convexity (6). In
the case of n = 1, L\-convexity is equivalent to the condition (4). Examples of L\-convex functions
are given in Section 4.1.

With this definition we can obtain the following desired statements in parallel with Theorems 1
and 2.

Theorem 3. An L\-convex function g : Zn → R is convex-extensible.

Theorem 4. For an L\-convex function g : Zn → R, a point p ∈ domZg is a global minimum if and
only if it is a local minimum in the sense that

g(p) ≤ min{g(p − q), g(p + q)} (∀q ∈ {0, 1}n). (7)

Although Theorem 4 affords a local criterion for global optimality of a point p, a straightforward
verification of (7) requires O(2n) function evaluations. The verification can be done in polynomial
time as follows. We consider set functions ρ+

p and ρ−p defined by ρ±p(Y) = g(p ± χY ) − g(p) for
Y ⊆ V , both of which are submodular. Since (7) is equivalent to saying that both ρ+

p and ρ−p achieve
the minimum at Y = ∅, this condition can be verified in polynomial time by submodular function
minimization algorithms [24, 35].

L\-convexity is closely related with submodularity. For two vectors p and q, the vectors of
componentwise maxima and minima are denoted respectively by p ∨ q and p ∧ q, that is,

(p ∨ q)i = max(pi, qi), (p ∧ q)i = min(pi, qi).

A function g : Zn → R is called submodular if

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (p, q ∈ Zn), (8)

3



1

y

x

y
′

‖

y + α(x − y)
x
′

‖
x − α(x − y)⑦

⑥
✲

✻

y y
′

‖

y + α(x − y)

xx
′

‖

x − α(x − y)

✲ ✛

図 1: 凸関数の性質（等近凸性）
Figure 2: Equidistance convexity

and translation submodular if

g(p) + g(q) ≥ g((p − α1) ∨ q) + g(p ∧ (q + α1)) (α ∈ Z+, p, q ∈ Zn), (9)

where 1 = (1, 1, . . . , 1) and Z+ denotes the set of nonnegative integers. The latter property charac-
terizes L\-convexity, as follows.

Theorem 5. For a function g : Zn → R, translation submodularity (9) is equivalent to discrete
midpoint convexity (6).

An L-convex function is defined as an L\-convex function g that satisfies

g(p + 1) = g(p) + r (10)

for some r ∈ R (which is independent of p). It is known that g is L-convex if and only if it satisfies
(8) and (10); in fact this is the original definition of L-convexity. L-convex functions and L\-convex
functions are essentially the same, in that L\-convex functions in n variables can be identified, up to
the constant r in (10), with L-convex functions in n + 1 variables.

2.2.3 M-convex functions

Just as L-convexity is defined through discretization of midpoint convexity, another kind of discrete
convexity, called M-convexity [39, 40], can be defined through discretization of another convexity
property. We feature an equivalent variant of M-convexity, called M\-convexity [49] (“M\” should
be read “em natural”).

We first observe that a convex function f on Rn satisfies the inequality

f (x) + f (y) ≥ f (x − α(x − y)) + f (y + α(x − y)) (11)

for every α ∈ R with 0 ≤ α ≤ 1. This inequality follows from (1) for λ = α and λ = 1−α, whereas it
implies (1) if f is a continuous function. The inequality (11) says that the sum of the function values
evaluated at two points, x and y, does not increase if the two points approach each other by the same
distance on the line segment connecting them (see Fig. 2). We refer to this property as equidistance
convexity.

For a function f : Zn → R in discrete variables we simulate equidistance convexity (11) by
moving a pair of points (x, y) to another pair (x′, y′) along the coordinate axes rather than on the
connecting line segment. To be more specific, we consider two kinds of possibilities

(x′, y′) = (x − χi, y + χi) or (x′, y′) = (x − χi + χ j, y + χi − χ j) (12)

with indices i and j such that xi > yi and x j < y j; see Fig. 3. For a vector z ∈ Rn in general, define
the positive and negative supports of z as

supp+(z) = {i | zi > 0}, supp−(z) = { j | z j < 0}.
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図 1: M
♮
凸関数の定義Figure 3: Nearer pair in the definition of M\-convex functions

Then the expression (12) can be rewritten compactly as (x′, y′) = (x − χi + χ j, y + χi − χ j) with
i ∈ supp+(x − y) and j ∈ supp−(x − y) ∪ {0}, where χ0 is defined to be the zero vector.

As a discrete analogue of equidistance convexity (11) we consider the following condition: For
any x, y ∈ domZ f and any i ∈ supp+(x − y), there exists j ∈ supp−(x − y) ∪ {0} such that

f (x) + f (y) ≥ f (x − χi + χ j) + f (y + χi − χ j), (13)

which is referred to as the exchange property. A function f : Zn → R having this exchange property
is called M\-convex. In the case of n = 1, M\-convexity is equivalent to the condition (4). Examples
of M\-convex functions are given in Section 4.2.

With this definition we can obtain the following desired statements comparable to Theorems 1
and 2.

Theorem 6. An M\-convex function f : Zn → R is convex-extensible.

Theorem 7. For an M\-convex function f : Zn → R, a point x ∈ domZ f is a global minimum if and
only if it is a local minimum in the sense that

f (x) ≤ f (x − χi + χ j) (∀i, j ∈ {0, 1, . . . , n}).

An M-convex function is defined as an M\-convex function f that satisfies (13) with j ∈ supp−(x−
y). This is equivalent to saying that f is an M-convex function if and only if it is M\-convex and
domZ f ⊆ {x ∈ Zn | ∑n

i=1 xi = r} for some r ∈ Z. M-convex functions and M\-convex functions are
essentially the same, in that M\-convex functions in n variables can be obtained as projections of
M-convex functions in n + 1 variables.

2.2.4 Classes of discrete convex functions

We have thus defined L\-convex functions and M\-convex functions by discretization of midpoint
convexity and equidistance convexity, respectively. The definitions are summarized in Fig. 4.

Figure 5 shows the classes of discrete convex functions we have introduced. L\-convex func-
tions contain L-convex functions as a special case. The same is true for M\-convex and M-convex
functions. By Theorems 3 and 6 both L\-convex functions and M\-convex functions are contained
in the class of convex-extensible functions. It is known that the classes of L-convex functions and
M-convex functions are disjoint, whereas the intersection of the classes of L\-convex functions and
M\-convex functions is exactly the class of separable convex functions.

2.2.5 Discrete convex sets

In the continuous case the convexity of a set S ⊆ Rn can be characterized by that of its indicator
function δS as

S is a convex set ⇐⇒ δS is a convex function.

We make use of this relation to define the concepts of discrete convex sets.
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〈Continuous Variables〉 〈Discrete Variables〉
f : Rn → R f : Zn → R

midpoint convex −→ discrete midpoint convex (L\-convex)
m [discretization]

(ordinary) convex
m [discretization]

equidistance convex −→ exchange property (M\-convex)
discrete midpoint convex: f (x) + f (y) ≥ f

(⌈
x+y
2

⌉)
+ f

(⌊
x+y
2

⌋)

midpoint convex: f (x) + f (y) ≥ 2 f
(

x+y
2

)

(ordinary) convex: λ f (x) + (1 − λ) f (y) ≥ f (λx + (1 − λ)y)
equidistance convex: f (x) + f (y) ≥ f (x − α(x − y)) + f (y + α(x − y))
exchange property: f (x) + f (y) ≥ min[ f (x − χi) + f (y + χi),

min
x j<y j
{ f (x − χi + χ j) + f (y + χi − χ j)}]

Figure 4: Definitions of L\-convexity and M\-convexity by discretization
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Figure 5: Classes of discrete convex functions
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For a set S ⊆ Zn the indicator function of S is a function δS : Zn → R given by (2). L\-convex
sets and M\-convex sets are defined as

S is an L\-convex set ⇐⇒ δS is an L\-convex function,
S is an M\-convex set ⇐⇒ δS is an M\-convex function.

Similarly for the definitions of L-convex and M-convex sets. We have S = S ∩ Zn for an L\-convex
(M\-convex, L-convex or M-convex) set S , where S denotes the convex hull of S .

For an L\-convex function f , both domZ f and argminZ f are L\-convex sets. This statement
remains true when L\-convexity is replaced by M\-convexity, L-convexity or M-convexity.

2.3 Discrete Convex Functions in Continuous Variables
So far we have been concerned with the translation from “continuous” to “discrete.” We have de-
fined L-convex and M-convex functions by discretization of midpoint convexity and equidistance
convexity, respectively. Although these two properities are both equivalent to (ordinary) convexity
for continuous functions in continuous variables, their discrete versions have given rise to different
concepts (cf. Fig. 4).

We are now interested in the reverse direction, from “discrete” to “continuous,” to define the
concepts of L-convex and M-convex functions in continuous variables [50, 51, 52]. In so doing
we intend to capture certain classes of convex functions with additional combinatorial structures.
We refer to such functions as discrete convex functions in continuous variables. This may sound
somewhat contradictory, but the adjective “discrete” indicates the discreteness in direction in the
space Rn of continuous variables.

2.3.1 L-convex functions

L\-convex functions in discrete variables have been introduced in terms of a discretization of mid-
point convexity. By Theorem 5, however, we can alternatively say that L\-convex functions are those
functions which satisfy translation submodularity (9).

This alternative definition enables us to introduce the concept of L\-convex functions in contin-
uous variables. That is, a convex function g : Rn → R is defined to be L\-convex if

g(p) + g(q) ≥ g((p − α1) ∨ q) + g(p ∧ (q + α1)) (α ∈ R+, p, q ∈ Rn), (14)

where R+ denotes the set of nonnegative reals. Examples of L\-convex functions are given in Section
4.1.

L\-convex functions constitute a subclass of convex functions that are equipped with certain
combinatorial properties in addition to convexity. It is known, for example, that a smooth function
g is L\-convex if and only if the Hessian matrix H = (hi j = ∂2g/∂pi∂p j) is a diagonally dominant
symmetric M-matrix, i.e.,

hi j ≤ 0 (i , j),
n∑

j=1

hi j ≥ 0 (i = 1, . . . , n) (15)

at each point. This is a combinatorial property on top of positive semidefiniteness, which is familiar
in operations research, mathematical economics, and numerical analysis. It may be said that L\-
convexity extends this well-known property to nonsmooth functions.

An L-convex function in continuous variables is defined as an L\-convex function g : Rn → R
that satisfies

g(p + α1) = g(p) + αr (α ∈ R, p ∈ Rn) (16)

for some r ∈ R (which is independent of p and α). L-convex functions and L\-convex functions are
essentially the same, in that L\-convex functions in n variables can be identified, up to the constant r
in (16), with L-convex functions in n + 1 variables.

The inequality (14) is a continuous version of the translation submodularity (9), in which we had
α ∈ Z+ and p, q ∈ Zn instead of α ∈ R+ and p, q ∈ Rn. It may be said that (14) is obtained from (9)
by prolongation, by which we mean a process converse to discretization. Figure 6 summarizes how
we have defined L\-convex functions in discrete and continuous variables. Note that prolongation of
discrete midpoint convexity renders no novel concept, but reduces to midpoint convexity, which is
(almost) equivalent to convexity.
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〈Continuous Variables〉 〈Discrete Variables〉
g : Rn → R g : Zn → R

(ordinary) convex
m [discretization]

midpoint convex −→ discrete midpoint convex
m

translation submodular ←− translation submodular
(L\-convex) [prolongation] (L\-convex)

(ordinary) convex: λg(p) + (1 − λ)g(q) ≥ g(λp + (1 − λ)q)
midpoint convex: g(p) + g(q) ≥ 2 g

(
p+q

2

)

discrete midpoint convex: g(p) + g(q) ≥ g
(⌈

p+q
2

⌉)
+ g

(⌊
p+q

2

⌋)

translation submodular: g(p) + g(q) ≥ g((p − α1) ∨ q) + g(p ∧ (q + α1))

Figure 6: Definitions of L\-convexity by discretization and prolongation

2.3.2 M-convex functions

M\-convex functions in continuous variables can be defined by prolongation (i.e., a continuous ver-
sion) of the exchange property (13). We say that a convex function f : Rn → R is M\-convex if, for
any x, y ∈ domR f and any i ∈ supp+(x − y), there exist j ∈ supp−(x − y) ∪ {0} and a positive real
number α0 such that

f (x) + f (y) ≥ f (x − α(χi − χ j)) + f (y + α(χi − χ j)) (17)

for all α ∈ R with 0 ≤ α ≤ α0.
M\-convex functions in continuous variables constitute another subclass of convex functions,

different from L\-convex functions, that are equipped with another kind of combinatorial properties.
See examples in Section 4.2.

An M-convex function in continuous variables is defined as an M\-convex function f : Rn → R
that satisfies (17) with j ∈ supp−(x − y). This is equivalent to saying that f is M-convex if and
only if it is M\-convex and domR f ⊆ {x ∈ Rn | ∑n

i=1 xi = r} for some r ∈ R. M-convex functions
and M\-convex functions are essentially the same, in that M\-convex functions in n variables can be
obtained as projections of M-convex functions in n + 1 variables.

2.3.3 Classes of discrete convex functions in continuous variables

Figure 7 shows the classes of discrete convex functions in continuous variables. L\-convex func-
tions contain L-convex functions as a special case. The same is true for M\-convex and M-convex
functions. It is known that the classes of L-convex functions and M-convex functions are disjoint,
whereas the intersection of the classes of L\-convex functions and M\-convex functions is exactly
the class of separable convex functions.

Comparison of Fig. 7 with Fig. 5 shows the parallelism between the continuous and discrete
cases.

3 Conjugacy
Conjugacy under the Legendre transformation is one of the most appealing facts in convex analysis.
In discrete convex analysis, the discrete Legendre transformation gives a one-to-one correspondence
between L-convex functions and M-convex functions.

3.1 Continuous Case
For a function f : Rn → R (not necessarily convex) with domR f , ∅, the convex conjugate f • :
Rn → R is defined by

f •(p) = sup{〈p, x〉 − f (x) | x ∈ Rn} (p ∈ Rn), (18)
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Fig. 1. Classes of convex functions
(M♮-convex ∩ L♮-convex = separable convex)

Figure 7: Classes of convex functions
(L\-convex ∩M\-convex = separable convex)

where 〈p, x〉 =
∑n

i=1 pixi is the inner product of p = (pi) ∈ Rn and x = (xi) ∈ Rn. The function
f • is also referred to as the (convex) Legendre(–Fenchel) transform of f , and the mapping f 7→ f •

as the (convex) Legendre(–Fenchel) transformation. Similarly to (18), the concave conjugate of
h : Rn → R is defined to be the function h◦ : Rn → R given by

h◦(p) = inf{〈p, x〉 − h(x) | x ∈ Rn} (p ∈ Rn). (19)

Note that h◦(p) = −(−h)•(−p).
The conjugacy theorem in convex analysis states that the Legendre transformation gives a one-

to-one correspondence in the class of closed proper convex functions, where a convex function f is
said to be proper if domR f is nonempty, and closed if the epigraph {(x, y) ∈ Rn+1 | y ≥ f (x)} is a
closed subset of Rn+1. Notation f •• means ( f •)•.

Theorem 8. The Legendre transformation (18) gives a symmetric one-to-one correspondence in
the class of all closed proper convex functions. That is, for a closed proper convex function f , the
conjugate function f • is a closed proper convex function and f •• = f .

Addition of combinatorial ingredients to the above theorem yields the conjugacy between M-
convex and L-convex functions.

Theorem 9 ([51]). The Legendre transformation (18) gives a one-to-one correspondence between
the classes of all closed proper M\-convex functions and L\-convex functions. Similarly for M-convex
and L-convex functions.

The first statement above means that, for a closed proper M\-convex function f , f • is a closed
proper L\-convex function and f •• = f , and that, for a closed proper L\-convex function g, g• is a
closed proper M\-convex function and g•• = g. To express this one-to-one correspondence we have
indicated M\-convex functions and L\-convex functions by congruent regions in Fig. 7. The second
statement means similarly that, for a closed proper M-convex function f , f • is a closed proper L-
convex function and f •• = f , and that, for a closed proper L-convex function g, g• is a closed proper
M-convex function and g•• = g. It is also noted that the conjugate of a separable convex function is
another separable convex function.

The L/M-conjugacy is also valid for polyhedral convex functions.

Theorem 10 ([50]). The Legendre transformation (18) gives a one-to-one correspondence between
the classes of all polyhedral M\-convex functions and L\-convex functions. Similarly for M-convex
and L-convex functions.
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3.2 Discrete Case
We turn to functions defined on integer points. For functions f : Zn → R and h : Zn → R with
domZ f , ∅ and domZh , ∅, discrete versions of the Legendre transformations are defined by

f •(p) = sup{〈p, x〉 − f (x) | x ∈ Zn} (p ∈ Rn), (20)
h◦(p) = inf{〈p, x〉 − h(x) | x ∈ Zn} (p ∈ Rn). (21)

We call (20) and (21), respectively, convex and concave discrete Legendre(–Fenchel) transforma-
tions. The functions f • : Rn → R and h◦ : Rn → R are called the convex conjugate of f and the
concave conjugate of h, respectively.

Theorem 11. For an M\-convex function f : Zn → R, the conjugate function f • : Rn → R is
a (locally polyhedral) L\-convex function. For an L\-convex function g : Zn → R, the conjugate
function g• : Rn → R is a (locally polyhedral) M\-convex function. Similarly for M-convex and
L-convex functions.

For an integer-valued function f , f •(p) is integer for an integer vector p. Hence (20) with p ∈ Zn

defines a transformation of f : Zn → Z to f • : Zn → Z; we refer to (20) with p ∈ Zn as (20)Z.
The conjugacy theorem for discrete M-convex and L-convex functions reads as follows.

Theorem 12 ([40]). The discrete Legendre transformation (20)Z gives a one-to-one correspondence
between the classes of all integer-valued M\-convex functions and L\-convex functions in discrete
variables. Similarly for M-convex and L-convex functions.

It should be clear that the first statement above means that, for an integer-valued M\-convex
function f : Zn → Z, the function f • in (20)Z is an integer-valued L\-convex function and f •• = f ,
where f •• is a short-hand notation for ( f •)• using the discrete Legendre transformation (20)Z, and
similarly when f is L\-convex.

4 Examples

4.1 L-convex Functions
Some examples of L\- and L-convex functions are given in this section. The following basic facts
are noted.

1. The effective domain of an L\-convex function is an L\-convex set.

2. An L\-convex function remains to be L\-convex when its effective domain is restricted to any
L\-convex set.

3. A sum of L\-convex functions is L\-convex.

Similar statements are true when “L\-convex” is replaced by “L-convex” in the above.
We first consider functions in discrete variable p = (p1, . . . , pn) ∈ Zn.

Linear function: A linear (or affine) function

g(p) = α + 〈p, x〉 (22)

with x ∈ Rn and α ∈ R is L-convex (and hence L\-convex).
Quadratic function: A quadratic function

g(p) =

n∑

i=1

n∑

j=1

ai j pi p j (23)

with ai j = a ji ∈ R (i, j = 1, . . . , n) is L\-convex if and only if

ai j ≤ 0 (i , j),
n∑

j=1

ai j ≥ 0 (i = 1, . . . , n). (24)
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It is L-convex if and only if

ai j ≤ 0 (i , j),
n∑

j=1

ai j = 0 (i = 1, . . . , n). (25)

Separable convex function: For univariate convex functions ψi (i = 1, . . . , n) and ψi j (i, j =

1, . . . , n; i , j),

g(p) =

n∑

i=1

ψi(pi) +
∑

i, j

ψi j(pi − p j) (26)

is an L\-convex function. This is L-convex if ψi = 0 for i = 1, . . . , n.
Maximum-component function: For any τ0, τ1, . . . , τn ∈ R,

g(p) = max{τ0, p1 + τ1, p2 + τ2, . . . , pn + τn} (27)

is an L\-convex function. This is L-convex if τ0 does not exist (i.e., τ0 = −∞). Hence

g(p) = max{p1, p2, . . . , pn} −min{p1, p2, . . . , pn} (28)

is an L-convex function. Furthermore, if ψ is a nondecreasing univariate convex function,

g(p) = ψ(max
1≤i≤n
{pi + τi}) (29)

is an L\-convex function. It is also mentioned that, if g0(p, t) is L\-convex in (p, t) ∈ Zn × Z and
nondecreasing in t, then the max-aggregation g : Zn × Zm → R defined by

g(p, q) = g0(p,max(q1, . . . , qm)) (p ∈ Zn, q ∈ Zm) (30)

is L\-convex in (p, q), whereas g is L-convex if g0 is L-convex.
Submodular set function: A submodular set function ρ : 2V → R can be identified with an

L\-convex function g under the correspondence g(χX) = ρ(X) for X ⊆ V , where domZg ⊆ {0, 1}n.
Multimodular function: A function h : Zn → R is multimodular if and only if it can be

represented as
h(p) = g(p1, p1 + p2, . . . , p1 + · · · + pn)

for some L\-convex function g; see [1, 2, 22, 45].

The constructions above work for functions in continuous variable p ∈ Rn. That is, the functions
g : Rn → R defined by the expressions (22) to (30) are L\- or L-convex functions, if all the variables
are understood as real numbers or vectors. It is noteworthy that quadratic L\-convex functions are
exactly the same as the (finite dimensional case of) Dirichlet forms used in probability theory [21].
The energy consumed in a nonlinear electrical network, when expressed as a function in terminal
voltages, is an L\-convex function [43, Section 2.2].

4.2 M-convex Functions
Some examples of M\- and M-convex functions are given in this section. The following basic facts
are noted.

1. The effective domain of an M\-convex function is an M\-convex set.

2. An M\-convex function does not necessarily remain M\-convex when its effective domain is
restricted to an M\-convex set.

3. A sum of M\-convex functions is not necessarily M\-convex.

4. The infimal convolution of M\-convex functions f1 and f2, defined as

( f1� f2)(x) = inf{ f1(x1) + f2(x2) | x = x1 + x2}, (31)

is M\-convex if f1� f2 does not take −∞, where x1, x2 ∈ Zn in the discrete case and x1, x2 ∈ Rn

in the continuous case.
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Similar statements are true when “M\-convex” is replaced by “M-convex” in the above.
We first consider functions in discrete variable x = (x1, . . . , xn) ∈ Zn.

Linear function: A linear (or affine) function

f (x) = α + 〈p, x〉 (32)

with p ∈ Rn and α ∈ R is M\-convex. It is M-convex if domZ f is an M-convex set.
Quadratic function: A quadratic function

f (x) =

n∑

i=1

n∑

j=1

ai jxix j (33)

with ai j = a ji ∈ R (i, j = 1, . . . , n) is M\-convex if and only if ai j ≥ 0 for all (i, j) and

ai j ≥ min(aik, a jk) if {i, j} ∩ {k} = ∅, (34)

where domZ f = Zn. A function f of (33), with domZ f = {x ∈ Zn | ∑n
i=1 xi = r} for some r ∈ Z, is

M-convex if and only if

ai j + akl ≥ min(aik + a jl, ail + a jk) if {i, j} ∩ {k, l} = ∅. (35)

Laminar convex function: By a laminar family we mean a nonempty family T of subsets of V
such that X ∩ Y = ∅ or X ⊆ Y or X ⊇ Y for any X,Y ∈ T . A function f is called laminar convex if it
can be represented as

f (x) =
∑

X∈T
fX(x(X)) (36)

for a laminar family T and a family of univariate convex functions fX indexed by X ∈ T , where
x(X) =

∑
i∈X xi. A laminar convex function is M\-convex. A separable convex function (3) is laminar

convex and hence M\-convex. It is known [23] that every quadratic M\-convex function (in discrete
variables) is laminar convex.

Minimum-value function: Given ai for i ∈ V we define a set function µ : 2V → R as µ(X) =

min{ai | i ∈ X} for nonempty X ⊆ V . By convention we put µ(∅) = a∗ by choosing a∗ ∈ R such
that a∗ ≥ max{ai | i ∈ V}. Then µ is M\-convex when identified with a function f : Zn → R with
domZ f ⊆ {0, 1}n by f (χX) = µ(X) for X ⊆ V .

Bipartite matching: Let G = (V,W; E) be a bipartite graph with vertex set V ∪W and edge set
E, and suppose that each edge e ∈ E is associated with weight γ(e) ∈ R. For X ⊆ V denote by Γ(X)
the minimum weight of a matching that matches with X, i.e.,

Γ(X) = min{
∑

e∈M

γ(e) | M is a matching, V ∩ ∂M = X},

where Γ(X) = +∞ if such M does not exist. Then Γ is M\-convex when identified with a function
f : Zn → R with domZ f ⊆ {0, 1}n by f (χX) = Γ(X) for X ⊆ V . This construction can be extended to
the minimum convex-cost flow problem.

Stable marriage problem: The payoff function of the stable marriage problem is M\-concave
[20, 68].

Matroid: Let (V,B,I, ρ) be a matroid on V with base family B, independent-set family I and
rank function ρ. The characteristic vectors of bases {χB | B ∈ B} form an M-convex set and those
of independent sets {χI | I ∈ I} form an M\-convex set. The rank function ρ : 2V → Z is M\-
concave when identified with a function f : Zn → R with domZ f = {0, 1}n by f (χX) = ρ(X) for
X ⊆ V; see Section 6.1. More generally, the vector rank function of an integral submodular system
is M\-concave [18, p. 51].

Valuated matroid: A valuated matroid ω : 2V → R of [9, 10] (see also [42, Chapter 5]) can be
identified with an M\-concave function f under the correspondence f (χX) = ω(X) for X ⊆ V , where
domZ f ⊆ {0, 1}n. The tropical geometry [67] is closely related with valuated matroids. For example,
the tropical linear space [66] is essentially the same as the circuit valuation of matroids [54].
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Next we turn to functions f : Rn → R in continuous variable x ∈ Rn. The infimal convolution
(31) preserves M\-convexity when the infimum is taken over x1, x2 ∈ Rn. Laminar convex functions
(36) as well as linear functions (32) remain to be M\-convex when x is understood as a real vector.
The energy consumed in a nonlinear electrical network, when expressed as a function in terminal
currents, is an M\-convex function [43, Section 2.2].

A subtlety arises for quadratic functions. Condition (34), together with ai j ≥ 0 for all (i, j), is
sufficient but not necessary for f : Rn → R of the form of (33) to be M\-convex. A necessary and
sufficient condition in terms of the matrix A = (ai j) is that, for any β > 0, A + βI is nonsingular and
(A + βI)−1 satisfies (24). It is also mentioned that not every quadratic M\-convex function in real
variables is laminar convex. As for M-convexity, condition (35) is sufficient but not necessary for f
to be M-convex.

Thus the relation between discrete and continuous cases are not so simple in M-convexity as in
L-convexity.

5 Separation and Fenchel Duality

5.1 Separation Theorem
The duality principle in convex analysis can be expressed in a number of different forms. One of the
most appealing statements is in the form of the separation theorem, which asserts the existence of a
separating affine function y = α∗ + 〈p∗, x〉 for a pair of convex and concave functions.

In the continuous case we have the following.

Theorem 13. Let f : Rn → R and h : Rn → R be convex and concave functions, respectively
(satisfying certain regularity conditions). If

f (x) ≥ h(x) (∀x ∈ Rn),

there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x) ≥ α∗ + 〈p∗, x〉 ≥ h(x) (∀x ∈ Rn).

A discrete separation theorem means a statement like:

For any f : Zn → R and h : Zn → R belonging to certain classes of functions, if
f (x) ≥ h(x) for all x ∈ Zn, then there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x) ≥ α∗ + 〈p∗, x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued α∗ ∈ Z and p∗ ∈ Zn.

Discrete separation theorems often capture deep combinatorial properties in spite of the apparent
similarity to the separation theorem in convex analysis. In this connection we note the following
facts (see [43, Examples 1.5 and 1.6] for concrete examples), where f denotes the convex closure of
f , h the concave closure of h, and /=⇒ stands for “does not imply.”

1. f (x) ≥ h(x) (∀x ∈ Zn) /=⇒ f (x) ≥ h(x) (∀x ∈ Rn).

2. f (x) ≥ h(x) (∀x ∈ Zn) /=⇒ existence of α∗ ∈ R and p∗ ∈ Rn.

3. existence of α∗ ∈ R and p∗ ∈ Rn /=⇒ existence of α∗ ∈ Z and p∗ ∈ Zn.

The separation theorems for M-convex/M-concave functions and for L-convex/L-concave func-
tions read as follows. It should be clear that f • and h◦ are the convex and concave conjugate functions
of f and h defined by (20) and (21), respectively.

Theorem 14 (M-separation theorem). Let f : Zn → R be an M\-convex function and h : Zn → R
be an M\-concave function such that domZ f ∩ domZh , ∅ or domR f • ∩ domRh◦ , ∅. If f (x) ≥ h(x)
(∀x ∈ Zn), there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x) ≥ α∗ + 〈p∗, x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued α∗ ∈ Z and p∗ ∈ Zn.
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Theorem 15 (L-separation theorem). Let g : Zn → R be an L\-convex function and k : Zn → R be
an L\-concave function such that domZg ∩ domZk , ∅ or domRg• ∩ domRk◦ , ∅. If g(p) ≥ k(p)
(∀p ∈ Zn), there exist β∗ ∈ R and x∗ ∈ Rn such that

g(p) ≥ β∗ + 〈p, x∗〉 ≥ k(p) (∀p ∈ Zn).

Moreover, if g and k are integer-valued, there exist integer-valued β∗ ∈ Z and x∗ ∈ Zn.

As an immediate corollary of the M-separation theorem we can obtain an optimality criterion
for the problem of minimizing the sum of two M-convex functions, which we call the M-convex
intersection problem. Note that the sum of M-convex functions is no longer M-convex and Theorem
7 does not apply.

Theorem 16 (M-convex intersection theorem). For M\-convex functions f1, f2 : Zn → R and a point
x∗ ∈ domZ f1 ∩ domZ f2 we have

f1(x∗) + f2(x∗) ≤ f1(x) + f2(x) (∀x ∈ Zn)

if and only if there exists p∗ ∈ Rn such that

( f1 − p∗)(x∗) ≤ ( f1 − p∗)(x) (∀x ∈ Zn),
( f2 + p∗)(x∗) ≤ ( f2 + p∗)(x) (∀x ∈ Zn).

These conditions are equivalent, respectively, to

( f1 − p∗)(x∗) ≤ ( f1 − p∗)(x∗ + χi − χ j) (∀ i, j ∈ {0, 1, . . . , n}),
( f2 + p∗)(x∗) ≤ ( f2 + p∗)(x∗ + χi − χ j) (∀ i, j ∈ {0, 1, . . . , n}),

and for such p∗ we have

argminZ( f1 + f2) = argminZ( f1 − p∗) ∩ argminZ( f2 + p∗).

Moreover, if f1 and f2 are integer-valued, we can choose integer-valued p∗ ∈ Zn.

Frank’s discrete separation theorem [16] for submodular/supermodular set functions is a special
case of the L-separation theorem. Frank’s weight splitting theorem [15] for the weighted matroid
intersection problem is a special case of the M-convex intersection problem. The submodular flow
problem can be generalized to the M-convex submodular flow problem [41]; see also [25, 26].

5.2 Fenchel Duality
Another expression of the duality principle is in the form of the Fenchel duality. This is a min-
max relation between a pair of convex and concave functions and their conjugate functions. Such a
min-max theorem is computationally useful in that it affords a certificate of optimality.

The Fenchel duality theorem in the continuous case reads as follows. Recall the notations f • and
h◦ in (18) and (19).

Theorem 17. Let f : Rn → R and h : Rn → R be convex and concave functions, respectively
(satisfying certain regularity conditions). Then

inf{ f (x) − h(x) | x ∈ Rn} = sup{h◦(p) − f •(p) | p ∈ Rn}.

We now turn to the discrete case. For any functions f : Zn → Z and h : Zn → Z we have a chain
of inequalities:

inf{ f (x) − h(x) | x ∈ Zn} sup{h◦(p) − f •(p) | p ∈ Zn}≥ ≥

inf{ f (x) − h(x) | x ∈ Rn} ≥ sup{h◦(p) − f
•
(p) | p ∈ Rn}

(37)

from the definitions (20) and (21) of conjugate functions f • and h◦, where f and h are convex and
concave closures of f and h, respectively. It should be observed that
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1. The second inequality in the middle of (37) is in fact an equality by the Fenchel duality theo-
rem (Theorem 17) in convex analysis;

2. The first (left) inequality in (37) can be strict even when f is convex-extensible and h is
concave-extensible, and similarly for the third (right) inequality. See Examples 1 and 2 below.

Example 1. For f , h : Z2 → Z defined as

f (x1, x2) = |x1 + x2 − 1|, h(x1, x2) = 1 − |x1 − x2|
we have inf{ f − h} = 0, inf{ f − h} = −1. The discrete Legendre transforms are given by

f •(p1, p2) =

{
p1 ((p1, p2) ∈ S )
+∞ (otherwise), h◦(p1, p2) =

{ −1 ((p1, p2) ∈ T )
−∞ (otherwise)

with S = {(−1,−1), (0, 0), (1, 1)} and T = {(−1, 1), (0, 0), (1,−1)}. Hence sup{h◦ − f •} = h◦(0, 0) −
f •(0, 0) = −1 − 0 = −1. Then (37) reads as

inf{ f − h} > inf{ f − h} = sup{h◦ − f
•} = sup{h◦ − f •}.

(0) (−1) (−1) (−1)

Example 2. For f , h : Z2 → Z defined as

f (x1, x2) = max(0, x1 + x2), h(x1, x2) = min(x1, x2)

we have inf{ f − h} = inf{ f − h} = 0. The discrete Legendre transforms are given as f • = δS and
h◦ = −δT in terms of the indicator functions of S = {(0, 0), (1, 1)} and T = {(1, 0), (0, 1)}. Since
S ∩ T = ∅, h◦ − f • is identically equal to −∞, whereas sup{h◦ − f

•} = 0 since f
•

= δS , h
◦

= −δT

and S ∩ T = {(1/2, 1/2)}. Then (37) reads as

inf{ f − h} = inf{ f − h} = sup{h◦ − f
•} > sup{h◦ − f •}.

(0) (0) (0) (−∞)

From the observations above, we see that the essence of the following theorem is the assertion
that the first and third inequalities in (37) are in fact equalities for M\-convex/M\-concave functions
and L\-convex/L\-concave functions.

Theorem 18 (Fenchel-type duality theorem).
(1) Let f : Zn → Z be an integer-valued M\-convex function and h : Zn → Z be an integer-valued
M\-concave function such that domZ f ∩ domZh , ∅ or domZ f • ∩ domZh◦ , ∅. Then we have

inf{ f (x) − h(x) | x ∈ Zn} = sup{h◦(p) − f •(p) | p ∈ Zn}. (38)

If this common value is finite, the infimum and the supremum are attained.
(2) Let g : Zn → Z be an integer-valued L\-convex function and k : Zn → Z be an integer-valued
L\-concave function such that domZg ∩ domZk , ∅ or domZg• ∩ domZk◦ , ∅. Then we have

inf{g(p) − k(p) | p ∈ Zn} = sup{k◦(x) − g•(x) | x ∈ Zn}. (39)

If this common value is finite, the infimum and the supremum are attained.

Edmonds’ intersection theorem [11] in the integral case is a special case of Theorem 18 (1)
above, and Fujishige’s Fenchel-type duality theorem [17] (see also [18, Section 6.1]) for submodular
set functions is a special case of Theorem 18 (2) above.

Whereas L-separation and M-separation theorems are parallel or conjugate in their statements,
the Fenchel-type duality theorem is self-conjugate, in that the substitution of f = g• and h = k◦ into
(38) results in (39) by virtue of g = g•• and k = k◦◦. With the knowledge of M-/L-conjugacy, these
three duality theorems are almost equivalent to one another; once one of them is established, the
other two theorems can be derived by relatively easy formal calculations.
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6 Submodular Function Maximization
Maximization of a submodular set function is a difficult task in general. Many NP-hard problems can
be reduced to this problem. Also known is that no polynomial algorithm exists in the ordinary oracle
model (and this statement is independent of the P,NP conjecture) [27, 33, 34]. For approximate
maximization under matroid constraints the performance bounds of greedy or ascent type algorithms
were analyzed in [7, 14, 56]. See, e.g., [4, 5, 6, 13] for recent development.

M\-concave functions on {0, 1}-vectors form a subclass of submodular set functions that are
algorithmically tractable for maximization [48]. This is compatible with our general understanding
that concave functions are easy to maximize, and explains why certain submodular functions treated
in the literature are easier to maximize. To be specific, we have the following.

1. The greedy algorithm can be generalized for maximization of a single M\-concave function.

2. The matroid intersection algorithm can be generalized for maximization of a sum of two M\-
concave functions.

Note that a sum of M\-concave functions is not necessarily M\-concave, though it is submodular.
It is also mentioned that maximization of a sum of three M\-concave functions is NP-hard, since it
includes the three-matroid intersection problem as a special case.

6.1 M\-concave set functions
Let us say that a set function ρ : 2V → R is M\-concave if the function h : Zn → R defined as
h(χX) = ρ(X) for X ⊆ V and h(x) = −∞ for x < {0, 1}n is M\-concave. In other words, ρ is M\-
concave if and only if, for any X,Y ⊆ V and i ∈ X \ Y , we have ρ(X) + ρ(Y) ≤ ρ(X \ {i}) + ρ(Y ∪ {i})
or ρ(X) + ρ(Y) ≤ ρ((X \ {i})∪ { j}) + ρ((Y ∪ {i}) \ { j}) for some j ∈ Y \ X. An M\-concave set function
is submodular [43, Theorem 6.19].

Not every submodular set function is M\-concave. An example of a submodular function that is
not M\-concave is given by ρ on V = {1, 2, 3} defined as ρ(∅) = 0, ρ({2, 3}) = 2, ρ({1}) = ρ({2}) =

ρ({3}) = ρ({1, 2}) = ρ({1, 3}) = ρ({1, 2, 3}) = 1. The condition above fails for X = {2, 3}, Y = {1} and
i = 2.

A simple example of an M\-concave set function is given by ρ(X) = ϕ(|X|), where ϕ is a uni-
variate concave function. This is a classical example [34] of a submodular function that connects
submodularity and concavity.

For a family of univariate concave functions {ϕA | A ∈ T } indexed by a family T of subsets of
V , the function

ρ(X) =
∑

A∈T
ϕA(|A ∩ X|) (X ⊆ V)

is submodular. This function is M\-concave if, in addition, T is a laminar family (i.e., A, B ∈ T ⇒
A ∩ B = ∅ or A ⊆ B or A ⊇ B).

Given a set of real numbers ai indexed by i ∈ V , the maximum-value function

ρ(X) = max
i∈X

ai (X ⊆ V)

is an M\-concave function, where ρ(∅) is defined to be sufficiently small.
A matroid rank function is M\-concave. Given a matroid on V in terms of the family I of

independent sets, the rank function ρ is defined by

ρ(X) = max{|I| | I ∈ I, I ⊆ X} (X ⊆ V),

which denotes the maximum size of an independent set contained in X. An interesting identity
exists that indicates a kind of self-conjugacy of a matroid rank function. Let g : Zn → Z be such
that g(χX) = ρ(X) for X ⊆ V and domZg = {0, 1}n, and denote by ρ• the discrete Legendre transform
g• of g defined by (20)Z (i.e., (20) with p ∈ Zn). Then we have

ρ(X) = |X| − ρ•(χX) (X ⊆ V). (40)
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This can be shown as follows: ρ•(χX) = maxY {|X ∩ Y | − ρ(Y) | Y ⊆ V} = maxY {|X ∩ Y | − ρ(Y) |
X ⊆ Y ⊆ V} = maxY {|X| − ρ(Y) | X ⊆ Y ⊆ V} = |X| − ρ(X); see also [18, Lemma 6.2]. Since ρ is
submodular, g is L\-convex, and hence g• (= ρ•) is M\-convex by conjugacy (Theorem 12). Then
the expression (40) shows that ρ is M\-concave.

A weighted matroid rank function, represented as

ρ(X) = max{
∑

i∈I

wi | I ∈ I, I ⊆ X} (X ⊆ V) (41)

with a nonnegative vector w ∈ Rn, is also M\-concave [62, 63]. It is noted that a polymatroid rank
function is not necessarily M\-concave.

6.2 Greedy algorithm
M\-concave set functions admit the following local characterization of global maximum, an imme-
diate corollary of Theorem 7.

Theorem 19. For an M\-concave set function ρ : 2V → R and a subset X ⊆ V, we have ρ(X) ≥ ρ(Y)
(∀ Y ⊆ V) if and only if

ρ(X) ≥ max
i∈X, j∈V\X

{ρ((X \ {i}) ∪ { j}), ρ(X \ {i}), ρ(X ∪ { j})}.

A natural greedy algorithm works for maximization of an M\-concave set function ρ:

S0: Put X := ∅.
S1: Find j ∈ V \ X that maximizes ρ(X ∪ { j}).
S2: If ρ(X) ≥ ρ(X ∪ { j}), then stop (X is a maximizer of ρ).
S3: Set X := X ∪ { j} and go to S1.

This algorithm may be regarded as a variant of the algorithm of Dress–Wenzel [9] for valuated
matroids, and the validity can be shown similarly.

6.3 Intersection algorithm
Edmonds’s matroid intersection/union algorithms show that we can efficiently maximize ρ1(X) +

ρ2(V \ X) and ρ1(X) + ρ2(X) − |X| for two matroid rank functions ρ1 and ρ2. It should be clear
that maxX{ρ1(X) + ρ2(V \ X)} is equal to the rank of the union of two matroids (V, ρ1) and (V, ρ2),
and that maxX{ρ1(X) + ρ2(X) − |X|} is equal to the maximum size of a common independent set
for matroid (V, ρ1) and the dual of matroid (V, ρ2). We note here that both ρ1(X) + ρ2(V \ X) and
ρ1(X) + (ρ2(X) − |X|) are submodular functions that are represented as a sum of two M\-concave
functions.

Edmonds’s intersection algorithm can be generalized for M\-concave functions. A sum of two
M\-concave set functions can be maximized in polynomial time by means of a variant of the val-
uated matroid intersection algorithm [37, 38]; see also [41, 42, 43]. It follows from the M-convex
intersection theorem (Theorem 16) that, for two M\-concave set functions ρ1 and ρ2, X maximizes
ρ1(X) + ρ2(X) if and only if there exists p∗ ∈ Rn such that X maximizes both ρ1(X) + p∗(X) and
ρ1(X) − p∗(X) at the same time, where p∗(X) =

∑
i∈X p∗i .

Conclusion
Efficient algorithms are available for minimization of L-convex and M-convex functions [43, Chapter
10]. The complexity analysis for the L-convex function minimization algorithm of [44] is improved
in [31, 53]. We also refer to [61, 69] for M-convex function minimization, and [25] for the submod-
ular flow problem, or equivalently for the Fenchel duality. Most of the efficient algorithms employ
scaling techniques based on proximity theorems; see [26, 36, 55] for proximity theorems.

Discrete convex functions appear naturally in operations research. Multimodular functions,
which are L\-convex functions in disguise, are used in queueing theory [1, 2, 22, 45] and inven-
tory theory [65, 72].
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A jump system [3] is a generalization of a matroid, a delta-matroid and a base polyhedron of an
integral polymatroid (or a submodular system). The concept of M-convex functions can be extended
to functions on constant-parity jump systems [46]. For x, y ∈ Zn we call s ∈ Zn an (x, y)-increment
if s = χi for some i ∈ supp+(y − x) or s = −χi for some i ∈ supp−(y − x). We call f : Zn → R an
M-convex function (on a constant-parity jump system) if it satisfies the following exchange property:
For any x, y ∈ domZ f and any (x, y)-increment s, there exists an (x + s, y)-increment t such that

f (x) + f (y) ≥ f (x + s + t) + f (y − s − t).

It then follows that domZ f is a constant-parity jump system. Theorem 7 can be extended and opera-
tions such as infimal convolution can be generalized. See [28, 29, 30, 64].
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