Hausdorff Institute of Mathematics, Summer School (September 21–25, 2015) Problems for "Discrete Convex Analysis" (by Kazuo Murota)

Problem 1. Prove that a function $f : \mathbb{Z}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = \varphi(x_1 - x_2)$ is an L^{\\[\eta}-convex function, where $\varphi : \mathbb{Z} \to \mathbb{R}$ is a univariate discrete convex function (i.e., $\varphi(t-1) + \varphi(t+1) \ge 2\varphi(t)$ for all $t \in \mathbb{Z}$).

Problem 2. Prove that a function $f : \mathbb{Z}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = \varphi(x_1 + x_2)$ is an M^{\beta}-convex function, where $\varphi : \mathbb{Z} \to \mathbb{R}$ is a univariate discrete convex function.

Problem 3. (1) Show that a function $f(x_1, x_2)$ is M^{\natural} -convex if and only if $f(x_1, -x_2)$ is L^{\natural} -convex. (2) Is there any such correspondence for functions in three or more variables?

Problem 4. Prove that $f(x) = \max\{0, x_1, x_2, \dots, x_n\}$ is an L^{\\[\beta_-} convex function.

For a family \mathcal{F} of subsets of $\{1, 2, ..., n\}$ and a family of univariate discrete convex functions $\varphi_A : \mathbb{Z} \to \mathbb{R}$ indexed by $A \in \mathcal{F}$, we consider a function defined by

$$f(x) = \sum_{A \in \mathcal{F}} \varphi_A(x(A)) \qquad (x \in \mathbf{Z}^n), \tag{1}$$

where $x(A) = \sum_{i \in A} x_i$. A function $f : \mathbb{Z}^n \to \mathbb{R}$ is called laminar convex if it can be represented in this form for some laminar family \mathcal{F} and φ_A ($A \in \mathcal{F}$).

Problem 5. Prove that a laminar convex function is M^{\natural} -convex.

In Problems 6–9, we consider a quadratic function in three variables $f(x) = x^{T}Ax$ ($x \in \mathbb{Z}^{3}$) defined by a 3 × 3 symmetric matrix $A = (a_{ij})$.

Problem 6. (1) Find a necessary and sufficient condition on (a_{ij}) for f(x) to be submodular. (2) When f(x) is submodular, is the matrix A positive semidefinite?

Problem 7. (1) Find a necessary and sufficient condition on (a_{ij}) for f(x) to be L^{β}-convex. (2) When f(x) is L^{β}-convex, is the matrix *A* positive semidefinite?

Problem 8. (1) Show that f(x) is an M^{\natural} -convex function if and only if (i) $a_{ii} \ge a_{ij} \ge 0$ for all (i, j), and (ii) the minimum among the three off-diagonal elements, a_{12} , a_{23} , a_{13} , is attained by at least two elements.

(2) When f(x) is M^{\(\beta\)}-convex, is the matrix A positive semidefinite?

Problem 9. (1) Is $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 + x_3)^2 + (x_1 + x_3)^2$ laminar convex? (2) Is this function M^{\(\beta\)}-convex?

(3) Prove that a quadratic function f(x) ($x \in \mathbb{Z}^3$) is M^{\phi}-convex if and only if it is laminar convex¹.

Problem 10. (1) Show that $f(x_1, x_2, x_3) = a(x_1 + x_2)^2 + b(x_2 + x_3)^2 + c(x_1 + x_3)^2$ with randomly chosen a, b, c > 0 is not an M⁴-convex function.

(2) Show that, under some "nondegeneracy assumption," a function f(x) of the form (1) is M^{\natural}-convex only if \mathcal{F} is a laminar family.

¹This statement is true for general *n*. That is, a quadratic function in *n* integer variables is M^{\natural} -convex if and only if it is laminar convex.

Problem 11. A classical paper of Miller (1971) in inventory theory dealt with the function:

$$f(x) = \sum_{k=0}^{\infty} \left(1 - \prod_{i=1}^{n} F_i(x_i + k) \right) + \sum_{i=1}^{n} c_i x_i \qquad (x = (x_1, \dots, x_n) \in \mathbf{Z}_+^n),$$
(2)

where F_1, \ldots, F_n are cumulative distribution functions of Poisson distributions (with different means), and c_1, \ldots, c_n are nonnegative real numbers. Prove that this function is L^{\\[\beta]}-convex.

The steepest descent algorithm for an L^{\(\beta\)}-convex function $g : \mathbb{Z}^n \to \mathbb{R} \cup \{+\infty\}$ reads as follows (e_X means the characteristic vector of a set $X \subseteq \{1, 2, ..., n\}$): Step 0: Set $p := p^\circ$ (initial point). Step 1: Find $\sigma \in \{+1, -1\}$ and X that minimize $g(p + \sigma e_X)$. Step 2: If $g(p + \sigma e_X) = g(p)$, then output p and stop. Step 3: Set $p := p + \sigma e_X$ and go to Step 1.

In Problems 12 and 13 we consider the behavior of this algorithm when n = 2.

Problem 12. Define $g : \mathbb{Z}^2 \to \mathbb{R}$ by $g(p_1, p_2) = \max(0, -p_1 + 2, -p_2 + 1, -p_1 + p_2 - 1, p_1 - p_2 - 2).$ (1) Verify that *g* is L^{\\[\beta_1\$}-convex.

(2) Find the set, say, S of the minimizers of g. Draw a figure, indicating S on the lattice \mathbb{Z}^2 .

(3) Take an initial point $p^{\circ} = (0, 0)$. Which minimizers are possibly found? Is the number of iterations constant, independent of the generated sequences of vector p? How is the number of iterations related to the ℓ_{∞} -distance from p° to S?

(4) Take another initial point $p^{\circ} = (1, 4)$. Which minimizers are possibly found? Is the number of iterations equal to the ℓ_{∞} -distance from p° to *S*?

Problem 13. Let $g : \mathbb{Z}^2 \to \mathbb{R}$ be an L^{\natural} -convex function that has a minimizer; denote by *S* the set of its minimizers. Give an expression for the number of iterations in terms of p° and *S*.

Problem 14 (M-minimizer cut theorem). Let $f : \mathbb{Z}^n \to \mathbb{R}$ be an M-convex function such that argmin $f \neq \emptyset$. Take any $x \in \text{dom } f$ and $i \in \{1, 2, ..., n\}$, and let $j \in \{1, 2, ..., n\}$ be such that $f(x - e_i + e_j) = \min_{1 \le k \le n} f(x - e_i + e_k)$. Prove that there exists $x^* \in \text{argmin } f$ such that $x_j^* \ge x_j + 1$ in the case of $i \ne j$ and $x_j^* \ge x_j$ in the case of i = j.

For a matroid on V, the rank function ρ is defined by

 $\rho(X) = \max\{|I| \mid I \text{ is an independent set, } I \subseteq X\} \qquad (X \subseteq V).$ (3)

Problem 15. Let ρ be a matroid rank function on V, and identify ρ with a function $f : \mathbb{Z}^V \to \mathbb{Z} \cup \{+\infty\}$ defined by $f(e_X) = \rho(X)$ for $X \subseteq V$ with dom $f = \{0, 1\}^V$.

(1) Prove that ρ is L^{\\[\beta]}-convex.

(2) Prove that ρ is M^{\beta}-concave.

(3) Prove that $f(e_X) + f^{\bullet}(e_X) = |X|$ for $X \subseteq V$, where $f^{\bullet} : \mathbb{Z}^V \to \mathbb{Z} \cup \{+\infty\}$ is the (convex) discrete Legendre transform of f.

Problem 16. Let ρ_1 and ρ_2 be the rank functions of two matroids on *V*. For the rank of the union matroid, the following formula is known:

$$\max_{X} \{\rho_1(X) + \rho_2(V \setminus X)\} = \min_{Y} \{\rho_1(Y) + \rho_2(Y) - |Y|\} + |V|.$$
(4)

Relate this formula to the Fenchel min-max duality in discrete convex analysis.

Problem 100 (Research Problem). Let G = (V, W; E) be a bipartite graph with edge cost $c : E \rightarrow \mathbf{R}$. Suppose that a matroid is given on *V*, with *I* denoting the family of independent sets. For $Y \subseteq W$ define f(Y) as the minimum cost of a matching that respects the matroid on *V* and matches with *Y* on *W*:

$$f(Y) = \min\{\sum_{e \in M} c(e) \mid M \text{ is a matching, } V \cap \partial M \in I, W \cap \partial M = Y \},$$
(5)

where $f(Y) = +\infty$ if no such *M* exists. It is known that this *f* is an M^{\natural}-convex set function. Does every M^{\natural}-convex set function *f* with $f(\emptyset) = 0$ arise in this way? That is, given an M^{\natural}-convex set function *f* on *W* with $f(\emptyset) = 0$, can we find a bipartite graph G = (V, W; E), a cost function $c : E \to \mathbf{R}$, and a matroid on *V* for which the above construction yields the given function *f*?