Hausdorff Institute of Mathematics, Summer School (September 21-25, 2015)
Problems for "Discrete Convex Analysis" (by Kazuo Murota)

Problem 1. Prove that a function $f: \mathbf{Z}^{2} \rightarrow \mathbf{R}$ defined by $f\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}-x_{2}\right)$ is an $L^{\text {b}}$-convex function, where $\varphi: \mathbf{Z} \rightarrow \mathbf{R}$ is a univariate discrete convex function (i.e., $\varphi(t-1)+\varphi(t+1) \geq 2 \varphi(t)$ for all $t \in \mathbf{Z})$.

Problem 2. Prove that a function $f: \mathbf{Z}^{2} \rightarrow \mathbf{R}$ defined by $f\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}+x_{2}\right)$ is an \mathbf{M}^{\natural}-convex function, where $\varphi: \mathbf{Z} \rightarrow \mathbf{R}$ is a univariate discrete convex function.

Problem 3. (1) Show that a function $f\left(x_{1}, x_{2}\right)$ is M^{\natural}-convex if and only if $f\left(x_{1},-x_{2}\right)$ is L^{\natural}-convex. (2) Is there any such correspondence for functions in three or more variables?

Problem 4. Prove that $f(x)=\max \left\{0, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is an L^{\natural}-convex function.
For a family \mathcal{F} of subsets of $\{1,2, \ldots, n\}$ and a family of univariate discrete convex functions $\varphi_{A}: \mathbf{Z} \rightarrow \mathbf{R}$ indexed by $A \in \mathcal{F}$, we consider a function defined by

$$
\begin{equation*}
f(x)=\sum_{A \in \mathcal{F}} \varphi_{A}(x(A)) \quad\left(x \in \mathbf{Z}^{n}\right) \tag{1}
\end{equation*}
$$

where $x(A)=\sum_{i \in A} x_{i}$. A function $f: \mathbf{Z}^{n} \rightarrow \mathbf{R}$ is called laminar convex if it can be represented in this form for some laminar family \mathcal{F} and $\varphi_{A}(A \in \mathcal{F})$.

Problem 5. Prove that a laminar convex function is M^{\natural}-convex.
In Problems 6-9, we consider a quadratic function in three variables $f(x)=x^{\top} A x$ $\left(x \in \mathbf{Z}^{3}\right)$ defined by a 3×3 symmetric matrix $A=\left(a_{i j}\right)$.

Problem 6. (1) Find a necessary and sufficient condition on $\left(a_{i j}\right)$ for $f(x)$ to be submodular.
(2) When $f(x)$ is submodular, is the matrix A positive semidefinite?

Problem 7. (1) Find a necessary and sufficient condition on $\left(a_{i j}\right)$ for $f(x)$ to be $L^{\text {b}}$-convex.
(2) When $f(x)$ is L^{\natural}-convex, is the matrix A positive semidefinite?

Problem 8. (1) Show that $f(x)$ is an M^{\natural}-convex function if and only if (i) $a_{i i} \geq a_{i j} \geq 0$ for all (i, j), and (ii) the minimum among the three off-diagonal elements, a_{12}, a_{23}, a_{13}, is attained by at least two elements.
(2) When $f(x)$ is M^{\natural}-convex, is the matrix A positive semidefinite?

Problem 9. (1) Is $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)^{2}+\left(x_{2}+x_{3}\right)^{2}+\left(x_{1}+x_{3}\right)^{2}$ laminar convex?
(2) Is this function M^{\natural}-convex?
(3) Prove that a quadratic function $f(x)\left(x \in \mathbf{Z}^{3}\right)$ is M^{\natural}-convex if and only if it is laminar convex ${ }^{1}$.

Problem 10. (1) Show that $f\left(x_{1}, x_{2}, x_{3}\right)=a\left(x_{1}+x_{2}\right)^{2}+b\left(x_{2}+x_{3}\right)^{2}+c\left(x_{1}+x_{3}\right)^{2}$ with randomly chosen $a, b, c>0$ is not an M^{\natural}-convex function.
(2) Show that, under some "nondegeneracy assumption," a function $f(x)$ of the form (1) is $\mathrm{M}^{\text {b }}$ convex only if \mathcal{F} is a laminar family.

[^0]Problem 11. A classical paper of Miller (1971) in inventory theory dealt with the function:

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty}\left(1-\prod_{i=1}^{n} F_{i}\left(x_{i}+k\right)\right)+\sum_{i=1}^{n} c_{i} x_{i} \quad\left(x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}_{+}^{n}\right) \tag{2}
\end{equation*}
$$

where F_{1}, \ldots, F_{n} are cumulative distribution functions of Poisson distributions (with different means), and c_{1}, \ldots, c_{n} are nonnegative real numbers. Prove that this function is L^{\natural}-convex.

The steepest descent algorithm for an L^{\natural}-convex function $g: \mathbf{Z}^{n} \rightarrow \mathbf{R} \cup\{+\infty\}$ reads as follows (e_{X} means the characteristic vector of a set $X \subseteq\{1,2, \ldots, n\}$):

Step 0: Set $p:=p^{\circ}$ (initial point).
Step 1: Find $\sigma \in\{+1,-1\}$ and X that minimize $g\left(p+\sigma e_{X}\right)$.
Step 2: If $g\left(p+\sigma e_{X}\right)=g(p)$, then output p and stop.
Step 3: Set $p:=p+\sigma e_{X}$ and go to Step 1.
In Problems 12 and 13 we consider the behavior of this algorithm when $n=2$.
Problem 12. Define $g: \mathbf{Z}^{2} \rightarrow \mathbf{R}$ by $g\left(p_{1}, p_{2}\right)=\max \left(0,-p_{1}+2,-p_{2}+1,-p_{1}+p_{2}-1, p_{1}-p_{2}-2\right)$.
(1) Verify that g is L^{4}-convex.
(2) Find the set, say, S of the minimizers of g. Draw a figure, indicating S on the lattice \mathbf{Z}^{2}.
(3) Take an initial point $p^{\circ}=(0,0)$. Which minimizers are possibly found? Is the number of iterations constant, independent of the generated sequences of vector p ? How is the number of iterations related to the ℓ_{∞}-distance from p° to S ?
(4) Take another initial point $p^{\circ}=(1,4)$. Which minimizers are possibly found? Is the number of iterations equal to the ℓ_{∞}-distance from p° to S ?

Problem 13. Let $g: \mathbf{Z}^{2} \rightarrow \mathbf{R}$ be an L^{\natural}-convex function that has a minimizer; denote by S the set of its minimizers. Give an expression for the number of iterations in terms of p° and S.

Problem 14 (M-minimizer cut theorem). Let $f: \mathbf{Z}^{n} \rightarrow \mathbf{R}$ be an M-convex function such that $\operatorname{argmin} f \neq \emptyset$. Take any $x \in \operatorname{dom} f$ and $i \in\{1,2, \ldots, n\}$, and let $j \in\{1,2, \ldots, n\}$ be such that $f\left(x-e_{i}+e_{j}\right)=\min _{1 \leq k \leq n} f\left(x-e_{i}+e_{k}\right)$. Prove that there exists $x^{*} \in \operatorname{argmin} f$ such that $x_{j}^{*} \geq x_{j}+1$ in the case of $i \neq j$ and $x_{j}^{*} \geq x_{j}$ in the case of $i=j$.

For a matroid on V, the rank function ρ is defined by

$$
\begin{equation*}
\rho(X)=\max \{|I| \mid I \text { is an independent set, } I \subseteq X\} \quad(X \subseteq V) . \tag{3}
\end{equation*}
$$

Problem 15. Let ρ be a matroid rank function on V, and identify ρ with a function $f: \mathbf{Z}^{V} \rightarrow$ $\mathbf{Z} \cup\{+\infty\}$ defined by $f\left(e_{X}\right)=\rho(X)$ for $X \subseteq V$ with $\operatorname{dom} f=\{0,1\}^{V}$.
(1) Prove that ρ is L^{\natural}-convex.
(2) Prove that ρ is M^{\natural}-concave.
(3) Prove that $f\left(e_{X}\right)+f^{\bullet}\left(e_{X}\right)=|X|$ for $X \subseteq V$, where $f^{\bullet}: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ is the (convex) discrete Legendre transform of f.

Problem 16. Let ρ_{1} and ρ_{2} be the rank functions of two matroids on V. For the rank of the union matroid, the following formula is known:

$$
\begin{equation*}
\max _{X}\left\{\rho_{1}(X)+\rho_{2}(V \backslash X)\right\}=\min _{Y}\left\{\rho_{1}(Y)+\rho_{2}(Y)-|Y|\right\}+|V| \tag{4}
\end{equation*}
$$

Relate this formula to the Fenchel min-max duality in discrete convex analysis.

Problem 100 (Research Problem). Let $G=(V, W ; E)$ be a bipartite graph with edge cost $c: E \rightarrow$ R. Suppose that a matroid is given on V, with I denoting the family of independent sets. For $Y \subseteq W$ define $f(Y)$ as the minimum cost of a matching that respects the matroid on V and matches with Y on W :

$$
\begin{equation*}
f(Y)=\min \left\{\sum_{e \in M} c(e) \mid M \text { is a matching, } V \cap \partial M \in \mathcal{I}, W \cap \partial M=Y\right\} \tag{5}
\end{equation*}
$$

where $f(Y)=+\infty$ if no such M exists. It is known that this f is an M^{\natural}-convex set function. Does every M^{\natural}-convex set function f with $f(\emptyset)=0$ arise in this way? That is, given an M^{\natural}-convex set function f on W with $f(\emptyset)=0$, can we find a bipartite graph $G=(V, W ; E)$, a cost function $c: E \rightarrow \mathbf{R}$, and a matroid on V for which the above construction yields the given function f ?

[^0]: ${ }^{1}$ This statement is true for general n. That is, a quadratic function in n integer variables is M^{\natural}-convex if and only if it is laminar convex.

