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Problems for “Discrete Convex Analysis” (by Kazuo Murota)

Problem 1. Prove that a functionf : Z2 → R defined byf (x1, x2) = φ(x1 − x2) is an L♮-convex
function, whereφ : Z → R is a univariate discrete convex function (i.e.,φ(t−1)+φ(t+1) ≥ 2φ(t)
for all t ∈ Z).

Problem 2. Prove that a functionf : Z2 → R defined byf (x1, x2) = φ(x1 + x2) is an M♮-convex
function, whereφ : Z → R is a univariate discrete convex function.

Problem 3. (1) Show that a functionf (x1, x2) is M♮-convex if and only iff (x1,−x2) is L♮-convex.
(2) Is there any such correspondence for functions in three or more variables?

Problem 4. Prove thatf (x) = max{0, x1, x2, . . . , xn} is an L♮-convex function.

For a familyF of subsets of{1,2, . . . ,n} and a family of univariate discrete convex
functionsφA : Z → R indexed byA ∈ F , we consider a function defined by

f (x) =
∑
A∈F
φA(x(A)) (x ∈ Zn), (1)

wherex(A) =
∑

i∈A xi . A function f : Zn → R is called laminar convex if it can be
represented in this form for some laminar familyF andφA (A ∈ F ).

Problem 5. Prove that a laminar convex function is M♮-convex.

In Problems 6–9, we consider a quadratic function in three variablesf (x) = x⊤Ax
(x ∈ Z3) defined by a3× 3 symmetric matrixA = (ai j ).

Problem 6. (1) Find a necessary and sufficient condition on (ai j ) for f (x) to be submodular.
(2) When f (x) is submodular, is the matrixA positive semidefinite?

Problem 7. (1) Find a necessary and sufficient condition on (ai j ) for f (x) to be L♮-convex.
(2) When f (x) is L♮-convex, is the matrixA positive semidefinite?

Problem 8. (1) Show thatf (x) is an M♮-convex function if and only if (i)aii ≥ ai j ≥ 0 for all
(i, j), and (ii) the minimum among the three off-diagonal elements,a12, a23, a13, is attained by at
least two elements.
(2) When f (x) is M♮-convex, is the matrixA positive semidefinite?

Problem 9. (1) Is f (x1, x2, x3) = (x1 + x2)2 + (x2 + x3)2 + (x1 + x3)2 laminar convex?
(2) Is this function M♮-convex?
(3) Prove that a quadratic functionf (x) (x ∈ Z3) is M♮-convex if and only if it is laminar convex1.

Problem 10. (1) Show thatf (x1, x2, x3) = a(x1 + x2)2 + b(x2 + x3)2 + c(x1 + x3)2 with randomly
chosena, b, c > 0 is not an M♮-convex function.
(2) Show that, under some “nondegeneracy assumption,” a functionf (x) of the form (1) is M♮-
convex only ifF is a laminar family.

1This statement is true for generaln. That is, a quadratic function inn integer variables is M♮-convex if and only if
it is laminar convex.

1



Problem 11. A classical paper of Miller (1971) in inventory theory dealt with the function:

f (x) =
∞∑

k=0

1− n∏
i=1

Fi(xi + k)

 + n∑
i=1

ci xi (x = (x1, . . . , xn) ∈ Zn
+), (2)

where F1, . . . , Fn are cumulative distribution functions of Poisson distributions (with different
means), andc1, . . . , cn are nonnegative real numbers. Prove that this function is L♮-convex.

The steepest descent algorithm for an L♮-convex functiong : Zn → R ∪ {+∞} reads
as follows (eX means the characteristic vector of a setX ⊆ {1,2, . . . , n}):

Step 0: Setp := p◦ (initial point).
Step 1: Findσ ∈ {+1,−1} andX that minimizeg(p+ σ eX).
Step 2: Ifg(p+ σ eX) = g(p), then outputp and stop.
Step 3: Setp := p+ σeX and go to Step 1.

In Problems 12 and 13 we consider the behavior of this algorithm whenn = 2.

Problem 12. Defineg : Z2→ R by g(p1, p2) = max(0,−p1+2,−p2+1,−p1+ p2−1, p1− p2−2).
(1) Verify thatg is L♮-convex.
(2) Find the set, say,S of the minimizers ofg. Draw a figure, indicatingS on the latticeZ2.
(3) Take an initial pointp◦ = (0,0). Which minimizers are possibly found? Is the number of
iterations constant, independent of the generated sequences of vectorp? How is the number of
iterations related to theℓ∞-distance fromp◦ to S?
(4) Take another initial pointp◦ = (1, 4). Which minimizers are possibly found? Is the number of
iterations equal to theℓ∞-distance fromp◦ to S?

Problem 13. Let g : Z2 → R be an L♮-convex function that has a minimizer; denote byS the set
of its minimizers. Give an expression for the number of iterations in terms ofp◦ andS.

Problem 14 (M-minimizer cut theorem). Let f : Zn → R be an M-convex function such that
argmin f , ∅. Take anyx ∈ dom f and i ∈ {1, 2, . . . ,n}, and let j ∈ {1, 2, . . . ,n} be such that
f (x− ei + ej) = min

1≤k≤n
f (x− ei + ek). Prove that there existsx∗ ∈ argmin f such thatx∗j ≥ x j + 1 in

the case ofi , j andx∗j ≥ x j in the case ofi = j.

For a matroid onV, the rank functionρ is defined by

ρ(X) = max{|I | | I is an independent set, I ⊆ X} (X ⊆ V). (3)

Problem 15. Let ρ be a matroid rank function onV, and identifyρ with a function f : ZV →
Z ∪ {+∞} defined byf (eX) = ρ(X) for X ⊆ V with dom f = {0, 1}V.
(1) Prove thatρ is L♮-convex.
(2) Prove thatρ is M♮-concave.
(3) Prove thatf (eX)+ f •(eX) = |X| for X ⊆ V, wheref • : ZV → Z ∪ {+∞} is the (convex) discrete
Legendre transform off .

Problem 16. Let ρ1 andρ2 be the rank functions of two matroids onV. For the rank of the union
matroid, the following formula is known:

max
X
{ρ1(X) + ρ2(V \ X)} = min

Y
{ρ1(Y) + ρ2(Y) − |Y|} + |V|. (4)

Relate this formula to the Fenchel min-max duality in discrete convex analysis.

2



Problem 100(Research Problem). Let G = (V,W; E) be a bipartite graph with edge costc : E→
R. Suppose that a matroid is given onV, with I denoting the family of independent sets. For
Y ⊆W define f (Y) as the minimum cost of a matching that respects the matroid onV and matches
with Y onW:

f (Y) = min{
∑
e∈M

c(e) | M is a matching,V ∩ ∂M ∈ I, W∩ ∂M = Y }, (5)

where f (Y) = +∞ if no suchM exists. It is known that thisf is an M♮-convex set function. Does
every M♮-convex set functionf with f (∅) = 0 arise in this way? That is, given an M♮-convex
set functionf on W with f (∅) = 0, can we find a bipartite graphG = (V,W; E), a cost function
c : E→ R, and a matroid onV for which the above construction yields the given functionf ?
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