Hausdoff Institute of Mathematics, Summer School (September 21-25, 2015)
Problems for “Discrete Convex Analysis” (by Kazuo Murota)

Problem 1. Prove that a functiorf : Z2 — R defined byf (1, X2) = (X1 — X2) is an Lf-convex
function, wherep : Z — R is a univariate discrete convex function (ig(t — 1)+ ¢(t + 1) > 2¢(t)
forallt e Z).

Problem 2. Prove that a functior : Z? — R defined byf (X1, X2) = (X1 + Xo) is an Mi-convex
function, wherep : Z — R is a univariate discrete convex function.

Problem 3. (1) Show that a functiorii (X1, x2) is Mf-convex if and only iff (X, —x2) is Li-convex.
(2) Is there any such correspondence for functions in three or more variables?

Problem 4. Prove thatf (x) = max0, X1, Xo,..., X} is an Li-convex function.

For a family# of subsets of1,2,...,n} and a family of univariate discrete convex
functionsga : Z — R indexed byA € 7, we consider a function defined by

)= ealx(A)  (xe2", (1)

AcF

wherex(A) = Yica X. A function f : Z" — R is called laminar convex if it can be
represented in this form for some laminar famflyandea (A € 7).

Problem 5. Prove that a laminar convex function isdonvex.

In Problems 6-9, we consider a quadratic function in three variadifles= x"Ax
(x € Z3) defined by &8 x 3 symmetric matrixA = (ajj).

Problem 6. (1) Find a necessary andffaient condition ond;) for f(x) to be submodular.
(2) Whenf(x) is submodular, is the matriX positive semidefinite?

Problem 7. (1) Find a necessary andfiaient condition ong;) for f(x) to be L5-convex.
(2) Whenf(x) is Li-convex, is the matriA positive semidefinite?

Problem 8. (1) Show thatf(x) is an M-convex function if and only if (iai > &; > 0 for all
@i, j), and (ii) the minimum among the thre@-aiagonal elements;,, a3, a;3, is attained by at
least two elements.

(2) Whenf(x) is Mi-convex, is the matriA positive semidefinite?

Problem 9. (1) Is f(X1, X2, X3) = (X1 + X2)? + (X2 + X3)? + (X1 + X3)? laminar convex?
(2) Is this function M-convex?
(3) Prove that a quadratic functidifx) (x € Z3) is Mé-convex if and only if it is laminar convéx

Problem 10. (1) Show thatf (x1, X2, X3) = a(x1 + X2)? + b(X2 + X3)? + ¢(X1 + X3) with randomly
choser, b, ¢ > 0 is not an M-convex function.

(2) Show that, under some “nondegeneracy assumption,” a funtirof the form (1) is M-
convex only ifF is a laminar family.

1This statement is true for general That is, a quadratic function iminteger variables is Fconvex if and only if
it is laminar convex.



Problem 11. A classical paper of Miller (1971) in inventory theory dealt with the function:

[ee)

f(x) = Z(l— Filx + k)] FYeK (X= (%) € Z0), 2)
i=1 i=1

k=0

whereFi,...,F, are cumulative distribution functions of Poisson distributions (wittiedent
means), andy, . . ., C, are nonnegative real numbers. Prove that this functiof-sobvex.

The steepest descent algorithm for g@rcbnvex functiorg : Z" — R U {+co} reads
as follows &x means the characteristic vector of aXet {1,2,...,n}):

Step 0: Sep := p° (initial point).

Step 1: Findr € {+1, —1} and X that minimizeg(p + o €x).

Step 2: Ifg(p + o-ex) = g(p), then outpuip and stop.

Step 3: Sep ;= p+ o ex and go to Step 1.

In Problems 12 and 13 we consider the behavior of this algorithm wheg.

Problem 12. Defineg : Z2 — R by g(p1, p2) = max(Q -p1+2, —p2+1,—p1+ p2—1, pr— p2—2).

(1) Verify thatg is L¥-convex.

(2) Find the set, says of the minimizers ofy. Draw a figure, indicating on the latticez?.

(3) Take an initial pointp® = (0,0). Which minimizers are possibly found? Is the number of
iterations constant, independent of the generated sequences of peckow is the number of
iterations related to thé,-distance fronp° to S?

(4) Take another initial poinp°® = (1, 4). Which minimizers are possibly found? Is the number of
iterations equal to thé,,-distance fronp°® to S?

Problem 13. Letg : Z2 — R be an li-convex function that has a minimizer; denote®the set
of its minimizers. Give an expression for the number of iterations in ternpS ahdS.

Problem 14 (M-minimizer cut theorem)Let f : Z" — R be an M-convex function such that

argminf # 0. Take anyx € domf andi € {1,2,...,n}, and letj € {1,2,...,n} be such that

f(x-e+¢g) = 1mkin f(x- & + &). Prove that there exists € argminf such thatx; > x; + 1 in
<kK<n

the case of # | a_nax’j‘ > xj in the case of = j.
For a matroid orV, the rank functiorn is defined by

p(X) = max]l| | | is an independent set C X} XcVv). 3)

Problem 15. Let p be a matroid rank function o, and identifyp with a functionf : zV —
Z U {+o0} defined byf (ex) = p(X) for X c V with domf = {0,1}V.

(1) Prove thap is L-convex.

(2) Prove thap is M&-concave.

(3) Prove thatf (ex) + f*(ex) = |X| for X C V, wheref® : ZV — Z U {+co} is the (convex) discrete
Legendre transform of.

Problem 16. Let p; andp» be the rank functions of two matroids ®h For the rank of the union
matroid, the following formula is known:

m)gXipl(X) +p2(V\ X)} = inn{Pl(Y) +p2(Y) = Y]} + VI 4)

Relate this formula to the Fenchel min-max duality in discrete convex analysis.



Problem 100(Research Problem).et G = (V, W; E) be a bipartite graph with edge cast E —

R. Suppose that a matroid is given ¥ with 7 denoting the family of independent sets. For
Y ¢ W definef(Y) as the minimum cost of a matching that respects the matroidamd matches
with Y onW:

f(Y) = min{z c(e) | Misamatchingy noM e I, WNoM =Y }, (5)
eM

wheref(Y) = +co if No suchM exists. It is known that thig is an M-convex set function. Does
every Mi-convex set functiorf with f(0) = 0 arise in this way? That is, given an*Monvex
set functionf on W with f(0) = 0, can we find a bipartite gragh = (V, W; E), a cost function
c: E —» R, and a matroid oW for which the above construction yields the given functiéh



