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L-CONVEX FUNCTIONS AND M-

CONVEX FUNCTIONS

In the field of nonlinear program-

ming (in continuous variables) convex analysis

[22, 23] plays a pivotal role both in theory and

in practice. An analogous theory for discrete

optimization (nonlinear integer programming),

called “discrete convex analysis” [18, 17], is de-

veloped for L-convex and M-convex functions by

adapting the ideas in convex analysis and gen-

eralizing the results in matroid theory. The L-

and M-convex functions are introduced in [18]

and [13, 14], respectively.

Definitions of L- and M-convexity. Let V

be a nonempty finite set and Z be the set of in-

tegers. For any function g : ZV → Z ∪ {+∞}
define dom g = {p ∈ ZV | g(p) < +∞}, called
the effective domain of g.

A function g : ZV → Z∪{+∞} with dom g ̸=
∅ is called L-convex if

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (p, q ∈ ZV ),

∃r ∈ Z : g(p+ 1) = g(p) + r (p ∈ ZV ),

where p ∨ q = (max(p(v), q(v)) | v ∈ V ) ∈ ZV ,

p ∧ q = (min(p(v), q(v)) | v ∈ V ) ∈ ZV , and 1

is the vector in ZV with all components being

equal to 1.

A set D ⊆ ZV is said to be an L-convex set if

its indicator function δD (defined by: δD(p) = 0

if p ∈ D, and = +∞ otherwise) is an L-convex

function, i.e., if (i) D ̸= ∅, (ii) p, q ∈ D ⇒
p ∨ q, p ∧ q ∈ D, and (iii) p ∈ D ⇒ p± 1 ∈ D.

A function f : ZV → Z∪{+∞} with dom f ̸=
∅ is called M-convex if it satisfies

(M-EXC) For x, y ∈ dom f and u ∈ supp+(x −
y), there exists v ∈ supp−(x− y) such that

f(x) + f(y) ≥ f(x− χu + χv) + f(y + χu − χv)

where, for any u ∈ V , χu is the characteristic

vector of u (defined by: χu(v) = 1 if v = u, and

= 0 otherwise), and

supp+(z) = {v ∈ V | z(v) > 0} (z ∈ ZV ),

supp−(z) = {v ∈ V | z(v) < 0} (z ∈ ZV ).

A set B ⊆ ZV is said to be an M-convex set if

its indicator function is an M-convex function,

i.e., if B satisfies

(B-EXC) For x, y ∈ B and for u ∈ supp+(x−y),
there exists v ∈ supp−(x−y) such that x−χu+

χv ∈ B and y + χu − χv ∈ B.

This means that an M-convex set is the same

as the set of integer points of the base polyhe-

dron of an integral submodular system (see [8]

for submodular systems).

L-convexity and M-convexity are conjugate to

each other under the integral Fenchel-Legendre

transformation f 7→ f• defined by

f•(p) = sup{⟨p, x⟩ − f(x) | x ∈ ZV } (p ∈ ZV ),

where ⟨p, x⟩ =
∑

v∈V p(v)x(v). That is, for L-

convex function g and M-convex function f , it

holds [18] that g• is M-convex, f• is L-convex,

g•• = g, and f•• = f .

Example 1: Minimum cost flow problem.

L-convexity and M-convexity are inherent in the

integer minimum-cost flow problem, as pointed

out in [14, 18]. Let G = (V,A) be a graph with

vertex set V and arc set A, and let T ⊆ V be

given. For ξ : A → Z its boundary ∂ξ : V → Z

is defined by

∂ξ(v) =
∑

{ξ(a) | a ∈ δ+v}

−
∑

{ξ(a) | a ∈ δ−v} (v ∈ V ),

where δ+v and δ−v denote the sets of out-going

and in-coming arcs incident to v, respectively.

For p̃ : V → Z its coboundary δp̃ : A → Z is

defined by

δp̃(a) = p̃(∂+a)− p̃(∂−a) (a ∈ A),

where ∂+a and ∂−a mean the initial and termi-

nal vertices of a, respectively. Denote the class

L-convex→ L-convex function

L-convex set

M-convex→ M-convex function

M-convex set

integral Fenchel-Legendre transformation
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of one-dimensional discrete convex functions by

C1 = {φ : Z → Z ∪ {+∞} | domφ ̸= ∅,
φ(t− 1) + φ(t+ 1) ≥ 2φ(t) (t ∈ Z)}.

For φa ∈ C1 (a ∈ A), representing the arc-

cost in terms of flow, the total cost function

f : ZT → Z ∪ {+∞} defined by

f(x) = inf
ξ
{
∑
a∈A

φa(ξ(a)) |

∂ξ(v) = −x(v) (v ∈ T ),

∂ξ(v) = 0 (v ∈ V \ T )} (x ∈ ZT )

is M-convex, provided that f > −∞ (i.e., f does

not take the value of −∞). For ψa ∈ C1 (a ∈ A),

representing the arc-cost in terms of tension, the

total cost function g : ZT → Z ∪ {+∞} defined

by

g(p) = inf
p̃
{
∑
a∈A

ψa(η(a)) | η = −δp̃,

p̃(v) = p(v) (v ∈ T )} (p ∈ ZT )

is L-convex, provided that g > −∞. The two

cost functions f(x) and g(p) are conjugate to

each other in the sense that, if ψa = φa
• (a ∈ A),

then g = f•.

Example 2: Polynomial matrix. Let A(s) be

anm×n matrix of rankm with each entry being

a polynomial in a variable s, and let B ⊆ 2V be

the family of bases of A(s) with respect to lin-

ear independence of the column vectors; namely,

J ⊆ V belongs to B if and only if |J | = m and

the column vectors with indices in J are linearly

independent. Then f : ZV → Z∪{+∞} defined

by

f(x) =

{
−degs detA[J ] (x = χJ , J ∈ B)
+∞ (otherwise)

is M-convex, where χJ ∈ {0, 1}V is the char-

acteristic vector of J (defined by: χJ(v) = 1 if

v ∈ J , and = 0 otherwise), A[J ] denotes the

m×m submatrix with column indices in J ∈ B,
and degs(·) means the degree as a polynomial in

s. The Grassmann-Plücker identity implies the

exchange property of f . This example was the

motivation of valuated matroids in [2, 3], which

in turn can be identified with the negative of

M-convex functions f with dom f ⊆ {0, 1}V .

For p = (p(v) | v ∈ V ) ∈ ZV denote by D(p)

the diagonal matrix of order n = |V | with diag-

onal elements sp(v) (v ∈ V ). Then the function

g : ZV → Z defined by

g(p) = max{degs det(A ·D(p))[J ] | J ∈ B}

is L-convex [17], where (A ·D(p))[J ] means the

m×m submatrix of A·D(p) with column indices

in J . We have g = f•.

L-convex sets. An L-convex set D ⊆ ZV has

“no holes” in the sense that D = D∩ZV , where

D denotes the convex hull of D in RV . Hence

it is natural to consider the polyhedral descrip-

tion of D, “L-convex polyhedron” (see [18, 17]).

For any function γ : V × V → Z ∪ {+∞} with

γ(v, v) = 0 (v ∈ V ), define

D(γ) = {p ∈ RV |
p(v)− p(u) ≤ γ(u, v) (∀u, v ∈ V )}.

If D(γ) ̸= ∅, D(γ) is an integral polyhedron and

D = D(γ)∩ZV is an L-convex set. If γ satisfies

triangle inequality:

γ(u, v) + γ(v, w) ≥ γ(u,w) (u, v, w ∈ V ),

then D(γ) ̸= ∅ and

γ(u, v) = sup{p(v)− p(u) | p ∈ D(γ)}
(u, v ∈ V ).

Conversely, for any nonempty D ⊆ ZV ,

γ(u, v) = sup{p(v)− p(u) | p ∈ D} (u, v ∈ V )

satisfies triangle inequality as well as γ(v, v) = 0

(v ∈ V ), and if D is L-convex, then D = D(γ).

Thus there is a one-to-one correspondence be-

tween L-convex set D and function γ satisfying

triangle inequality. In particular, D ⊆ ZV is L-

convex if and only if D = D(γ) ∩ ZV for some

γ satisfying triangle inequality. For L-convex

sets D1, D2 ⊆ ZV , it holds that D1 + D2 =

D1 +D2 ∩ ZV and D1 ∩D2 = D1 ∩D2.

It is also true that a function γ satisfying

triangle inequality corresponds one-to-one to a

positively homogeneous M-convex function f

(i.e, f(λx) = λf(x) for x ∈ ZV and 0 ≤ λ ∈ Z).

The correspondence f 7→ γ is given by

γ(u, v) = f(χv − χu) (u, v ∈ V ),
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whereas γ 7→ f by

f(x) = inf
λ
{
∑

u,v∈V
λuvγ(u, v) |∑

u,v∈V
λuv(χv − χu) = x,

0 ≤ λuv ∈ Z (u, v ∈ V )}
(x ∈ ZV ).

The correspondence between L-convex sets and

positively homogeneous M-convex functions via

functions with triangle inequality is a special

case of the conjugacy relationship between L-

and M-convex functions.

M-convex sets. An M-convex set B ⊆ ZV has

“no holes” in the sense that B = B∩ZV . Hence

it is natural to consider the polyhedral descrip-

tion of B, “M-convex polyhedron.” A set func-

tion ρ : 2V → Z∪{+∞} is said to be submodular

if

ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y )

(X,Y ⊆ V ),

where the inequality is satisfied if ρ(X) or ρ(Y )

is equal to +∞. It is assumed throughout that

ρ(∅) = 0 and ρ(V ) < +∞ for any set function

ρ : 2V → Z∪{+∞}. For a set function ρ, define

B(ρ) = {x ∈ RV |
x(X) ≤ ρ(X) (∀X ⊂ V ), x(V ) = ρ(V )},

where x(X) =
∑

{x(v) | v ∈ X}. If ρ is submod-

ular, B(ρ) is a nonempty integral polyhedron,

B = B(ρ) ∩ ZV is an M-convex set, and

ρ(X) = sup{x(X) | x ∈ B(ρ)} (X ⊆ V ).

Conversely, for any nonempty B ⊆ ZV , define a

set function ρ by

ρ(X) = sup{x(X) | x ∈ B} (X ⊆ V ).

If B is M-convex, then ρ is submodular and

B = B(ρ). Thus there is a one-to-one corre-

spondence between M-convex set B and sub-

modular set function ρ. In particular, B ⊆ ZV

is M-convex if and only if B = B(ρ) ∩ ZV for

some submodular ρ. The correspondence B ↔ ρ

is a restatement of a well-known fact [4, 8].

For M-convex sets B1, B2 ⊆ ZV , it holds that

B1+B2 = B1 +B2 ∩ZV and B1∩B2 = B1 ∩B2.

It is also true that a submodular set function ρ

corresponds one-to-one to a positively homoge-

neous L-convex function g. The correspondence

g 7→ ρ is given by the restriction

ρ(X) = g(χX) (X ⊆ V )

(χX is the characteristic vector of X), whereas

ρ 7→ g by the Lovász extension (explained

below). The correspondence between M-convex

sets and positively homogeneous L-convex func-

tions via submodular set functions is a special

case of the conjugacy relationship between M-

and L-convex functions.

For a set function ρ : 2V → Z ∪ {+∞},
the Lovász extension [12] of ρ is a function

ρ̂ : RV → R ∪ {+∞} defined by

ρ̂(p) =
n∑

j=1

(pj − pj+1)ρ(Vj) (p ∈ RV ),

where, for each p ∈ RV , the elements of V

are indexed as {v1, v2, · · · , vn} (with n = |V |)
in such a way that p(v1) ≥ p(v2) ≥ · · · ≥
p(vn); pj = p(vj), Vj = {v1, v2, · · · , vj} for

j = 1, · · · , n, and pn+1 = 0. The right-hand side

of the above expression is equal to +∞ if and

only if pj − pj+1 > 0 and ρ(Vj) = +∞ for some

j with 1 ≤ j ≤ n − 1. The Lovász extension ρ̂

is indeed an extension of ρ, since ρ̂(χX) = ρ(X)

for X ⊆ V .

The relationship between submodularity and

convexity is revealed by the statement [12] that

a set function ρ is submodular if and only if its

Lovász extension ρ̂ is convex.

The restriction to ZV of the Lovász exten-

sion of a submodular set function is a positively

homogeneous L-convex function, and any pos-

itively homogeneous L-convex function can be

obtained in this way [18].

Properties of L-convex functions. For any

g : ZV → Z ∪ {+∞} and x ∈ RV , define

g[−x] : ZV → R ∪ {+∞} by

g[−x](p) = g(p)− ⟨p, x⟩ (p ∈ ZV ).

submodular→ submodular function

Lovász extension
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The set of the minimizers of g[−x] is denoted as

argmin (g[−x]).
Let g : ZV → Z ∪ {+∞} be L-convex. Then

dom g is an L-convex set. For each p ∈ dom g,

ρp(X) = g(p+ χX)− g(p) (X ⊆ V )

is a submodular set function with ρp(∅) = 0 and

ρp(V ) < +∞.

An L-convex function g can be extended to a

convex function g : RV → R ∪ {+∞} through

the Lovász extension of the submodular set func-

tions ρp for p ∈ dom g. Namely, for p ∈ dom g

and q ∈ [0, 1]V , it holds [18] that

g(p+ q) = g(p)

+
n∑

j=1

(qj − qj+1)(g(p+ χVj )− g(p)),

where, for each q, the elements of V are indexed

as {v1, v2, · · · , vn} (with n = |V |) in such a way

that q(v1) ≥ q(v2) ≥ · · · ≥ q(vn); qj = q(vj),

Vj = {v1, v2, · · · , vj} for j = 1, · · · , n, and

qn+1 = 0. The expression of g shows that an

L-convex function is an integrally convex func-

tion in the sense of [5].

An L-convex function g enjoys discrete mid-

point convexity :

g(p) + g(q) ≥ g

(⌈
p+ q

2

⌉)
+ g

(⌊
p+ q

2

⌋)
for p, q ∈ ZV , where ⌈p⌉ (or ⌊p⌋) for any p ∈ RV

denotes the vector obtained by rounding up (or

down) the components of p to the nearest inte-

gers.

The minimum of an L-convex function g is

characterized by the local minimality in the

sense that, for p ∈ dom g, g(p) ≤ g(q) for all

q ∈ ZV if and only if g(p+1) = g(p) ≤ g(p+χX)

for all X ⊆ V .

The minimizers of an L-convex function, if

nonempty, forms an L-convex set. For any x ∈
RV , argmin (g[−x]), if nonempty, is an L-convex

set. Conversely, this property characterizes L-

convex functions, under an auxiliary assumption

that the function can be extented to a convex

function over RV (cf. [20]).

A number of operations can be defined for L-

convex functions [18, 17]. For x ∈ ZV , g[−x] is

an L-convex function. For a ∈ ZV and β ∈ Z,

g(a+ βp) is L-convex in p. For U ⊆ V , the pro-

jection of g to U :

gU (p′) = inf{g(p′, p′′) | p′′ ∈ ZV \U} (p′ ∈ ZU )

is L-convex in p′, provided that gU > −∞. For

ψv ∈ C1 (v ∈ V ),

g̃(p) = inf
q∈ZV

[
g(q) +

∑
v∈V

ψv(p(v)− q(v))

]

is L-convex in p ∈ ZV , provided that g̃ > −∞.

The sum of two (or more) L-convex functions is

L-convex, provided that its effective domain is

nonempty.

Properties of M-convex functions. Let f :

ZV → Z ∪ {+∞} be M-convex. Then dom f is

an M-convex set. For each x ∈ dom f ,

γx(u, v) = f(x− χu + χv)− f(x) (u, v ∈ V )

satisfies [17] triangle inequality.

An M-convex function f can be extended to

a convex function f : RV → R ∪ {+∞}, and
the value of f(x) for x ∈ RV is determined by

{f(y) | y ∈ ZV , ⌊x⌋ ≤ y ≤ ⌈x⌉}. That is, an M-

convex function is an integrally convex function

in the sense of [5].

The minimum of an M-convex function f

is characterized by the local minimality in the

sense that for x ∈ dom f , f(x) ≤ f(y) for all

y ∈ ZV if and only if f(x) ≤ f(x− χu + χv) for

all u, v ∈ V [13, 14, 18].

The minimizers of an M-convex function, if

nonempty, forms an M-convex set. Moreover, for

any p ∈ RV , argmin (f [−p]), if nonempty, is an

M-convex set. Conversely, this property charac-

terizes M-convex functions, under an auxiliary

assumption that the effective domain is bounded

or the function can be extented to a convex func-

tion over RV (see [14, 18]).

The level set of an M-convex function is not

necessarily an M-convex set, but enjoys a weaker

exchange property. Namely, for any p ∈ RV and

α ∈ R, S = {x ∈ ZV | f [−p](x) ≤ α} (the

level set of f [−p]) satisfies: For x, y ∈ S and for

u ∈ supp+(x− y), there exists v ∈ supp−(x− y)

such that either x−χu+χv ∈ S or y+χu−χv ∈
discrete midpoint convexity
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S. Conversely, this property characterizes M-

convex functions [26].

A number of operations can be defined for M-

convex functions [18, 17]. For p ∈ ZV , f [−p] is
an M-convex function. For a ∈ ZV , f(a−x) and
f(a + x) are M-convex in x. For U ⊆ V , the

restriction of f to U :

fU (x
′) = f(x′,0V \U ) (x′ ∈ ZU )

(where 0V \U is the zero vector in ZV \U ) is M-

convex in x′, provided that dom fU ̸= ∅. For

φv ∈ C1 (v ∈ V ),

f̃(x) = f(x) +
∑
v∈V

φv(x(v)) (x ∈ ZV )

is M-convex, provided that dom f̃ ̸= ∅. In par-

ticular, a separable convex function f̃(x) =∑
v∈V φv(x(v)) with dom f̃ being an M-convex

set is an M-convex function. For two M-convex

functions f1 and f2, the integral convolution

(f1□f2)(x) = inf{f1(x1) + f2(x2) |
x = x1 + x2;x1, x2 ∈ ZV } (x ∈ ZV )

is either M-convex or else (f1□f2)(x) = ±∞ for

all x ∈ ZV .

Sum of two M-convex functions is not neces-

sarily M-convex; such function with nonempty

effective domain is called M2-convex . Convolu-

tion of two L-convex functions is not necessar-

ily L-convex; such function with nonempty ef-

fective domain is called L2-convex . M2- and L2-

convex functions are in one-to-one correspon-

dence through the integral Fenchel-Legendre

transformation.

L♮- and M♮-convexity. L♮- and M♮-convexity

are variants of, and essentially equivalent to,

L- and M-convexity, respectively. L♮- and M♮-

convex functions are introduced in [9] and [21],

respectively.

Let v0 be a new element not in V and define

Ṽ = {v0} ∪ V . A function g : ZV → Z ∪ {+∞}
with dom g ̸= ∅ is called L♮-convex if it is ex-

pressed in terms of an L-convex function g̃ :

ZṼ → Z ∪ {+∞} as g(p) = g̃(0, p). Namely,

an L♮-convex function is a function obtained as

the restriction of an L-convex function. Con-

versely, an L♮-convex function determines the

corresponding L-convex function up to the con-

stant r in the definition of L-convex function.

An L♮-convex function is essentially the same

as a submodular integrally convex function of

[5], and hence is characterized by discrete mid-

point convexity [9]. An L-convex function, enjoy-

ing discrete midpoint convexity, is an L♮-convex

function.

Quadratic function

g(p) =
n∑

i=1

n∑
j=1

aijpipj (p ∈ Zn)

with aij = aji ∈ Z is L♮-convex if and only if

aij ≤ 0 (i ̸= j) and
∑n

j=1 aij ≥ 0 (i = 1, · · · , n).
For {ψi ∈ C1 | i = 1, · · · , n}, a separable convex

function

g(p) =

n∑
i=1

ψi(pi) (p ∈ Zn)

is L♮-convex.

The properties of L-convex functions men-

tioned above are carried over, mutatis mutan-

dis, to L♮-convex functions. In addition, the re-

striction of an L♮-convex function g to U ⊆ V ,

denoted gU , is L
♮-convex.

A subset of ZV is called an L♮-convex set if

its indicator function is an L♮-convex function.

A set E ⊆ ZV is an L♮-convex set if and only if

p, q ∈ E =⇒
⌈
p+ q

2

⌉
,

⌊
p+ q

2

⌋
∈ E.

A function f : ZV → Z∪{+∞} with dom f ̸=
∅ is called M♮-convex if it is expressed in terms

of an M-convex function f̃ : ZṼ → Z∪{+∞} as

f̃(x0, x) =

{
f(x) if x0 +

∑
u∈V x(u) = 0

+∞ otherwise.

Namely, an M♮-convex function is a function ob-

tained as the projection of an M-convex func-

tion. Conversely, an M♮-convex function deter-

mines the corresponding M-convex function up

M2-convex→ M2-convex function

L2-convex→ L2-convex function

L♮-convex→ L♮-convex function

L♮-convex set

M♮-convex→ M♮-convex function
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to a translation of dom f in the direction of v0.

A function f : ZV → Z∪{+∞} with dom f ̸= ∅
is M♮-convex if and only if (see [21]) it satisfies

(M♮-EXC) For x, y ∈ dom f and u ∈ supp+(x−
y),

f(x) + f(y)

≥ min[ f(x− χu) + f(y + χu),

min
v∈supp−(x−y)

{f(x− χu + χv)

+ f(y + χu − χv)} ].

Since (M-EXC) implies (M♮-EXC), an M-convex

function is an M♮-convex function.

Quadratic function

f(x) =
n∑

i=1

aixi
2 + b

∑
i<j

xixj (x ∈ Zn)

with ai ∈ Z (1 ≤ i ≤ n), b ∈ Z is M♮-

convex if 0 ≤ b ≤ 2min1≤i≤n ai (cf. [21]). For

{φi ∈ C1 | i = 0, 1, · · · , n}, a function of the

form

f(x) = φ0(

n∑
i=1

xi) +

n∑
i=1

φi(xi) (x ∈ Zn)

is M♮-convex [21]; a separable convex function

is a special case of this (with φ0 = 0). More

generally, for {φX ∈ C1 | X ∈ T } indexed by a

laminar family T ⊆ 2V , the function

f(x) =
∑
X∈T

φX(x(X)) (x ∈ ZV )

is M♮-convex [1], where T is called laminar if for

any X,Y ∈ T , at least one of X ∩ Y , X \ Y ,

Y \X is empty.

The properties of M-convex functions men-

tioned above are carried over, mutatis mutandis,

to M♮-convex functions. In addition, the projec-

tion of an M♮-convex function f to U ⊆ V , de-

noted fU , is M♮-convex.

A subset of ZV is called an M♮-convex set if

its indicator function is an M♮-convex function.

A set Q ⊆ ZV is an M♮-convex set if and only

if Q is the set of integer points of an integral

generalized polymatroid (cf. [7] for generalized

polymatroids).

As a consequence of the conjugacy between L-

and M-convexity, L♮-convex functions and M♮-

convex functions are conjugate to each other

under the integral Fenchel-Legendre transforma-

tion.

Duality. Discrete duality theorems hold true

for L-convex/concave and M-convex/concave

functions. A function g : ZV → Z ∪ {−∞} is

called L-concave (resp., L♮-, M-, or M♮-concave)

if −g is L-convex (resp., L♮-, M-, or M♮-convex);

dom g means the effective domain of −g. The
concave counterpart of the discrete Fenchel-

Legendre transform is defined as

g◦(p) = inf{⟨p, x⟩ − g(x) | x ∈ ZV } (p ∈ ZV ).

A discrete separation theorem for L-

convex/concave functions, named L-separation

theorem [18] (see also [10]), reads as follows.

Let f : ZV → Z ∪ {+∞} be an L♮-convex

function and g : ZV → Z ∪ {−∞} be an L♮-

concave function such that dom f ∩ dom g ̸= ∅
or dom f•∩dom g◦ ̸= ∅. If f(p) ≥ g(p) (p ∈ ZV ),

there exist β∗ ∈ Z and x∗ ∈ ZV such that

f(p) ≥ β∗ + ⟨p, x∗⟩ ≥ g(p) (p ∈ ZV ).

Since a submodular set function can be

identified with a positively homogeneous L-

convex function, the L-separation theorem im-

plies Frank’s discrete separation theorem for a

pair of sub/supermodular functions [6], which

reads as follows. Let ρ : 2V → Z ∪ {+∞} and

µ : 2V → Z ∪ {−∞} be submodular and su-

permodular functions, respectively, with ρ(∅) =
µ(∅) = 0, ρ(V ) < +∞, µ(V ) > −∞, where µ

is called supermodular if −µ is submodular. If

ρ(X) ≥ µ(X) (X ⊆ V ), there exists x∗ ∈ ZV

such that

ρ(X) ≥ x∗(X) ≥ µ(X) (X ⊆ V ).

Another discrete separation theorem, M-

separation theorem [14, 18] (see also [10]), holds

true for M-convex/concave functions. Namely,

let f : ZV → Z ∪ {+∞} be an M♮-convex

M♮-convex set

L-separation theorem

M-separation theorem
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function and g : ZV → Z ∪ {−∞} be an M♮-

concave function such that dom f ∩ dom g ̸= ∅
or dom f•∩dom g◦ ̸= ∅. If f(x) ≥ g(x) (x ∈ ZV ),

there exist α∗ ∈ Z and p∗ ∈ ZV such that

f(x) ≥ α∗ + ⟨p∗, x⟩ ≥ g(x) (x ∈ ZV ).

The L- and M-separation theorems are conju-

gate to each other, while a self-conjugate state-

ment can be made in the form of the Fenchel-

type duality [14, 18], as follows. Let f : ZV →
Z ∪ {+∞} be an L♮-convex function and g :

ZV → Z∪{−∞} be an L♮-concave function such

that dom f ∩dom g ̸= ∅ or dom f•∩dom g◦ ̸= ∅.
Then it holds that

inf{f(p)− g(p) | p ∈ ZV }
= sup{g◦(x)− f•(x) | x ∈ ZV }.

Moreover, if this common value is finite, the in-

fimum is attained by some p ∈ dom f ∩ dom g

and the supremum is attained by some x ∈
dom f• ∩ dom g◦.

Here is a simple example to illustrate the

subtlety of discrete separation for discrete func-

tions. Functions f : Z2 → Z and g : Z2 → Z

defined by f(x1, x2) = max(0, x1 + x2) and

g(x1, x2) = min(x1, x2) can be extended respec-

tively to a convex function f : R2 → R and a

concave function g : R2 → R according to the

defining expressions. With p =
(
1
2 ,

1
2

)
, we have

f(x) ≥ ⟨p, x⟩ ≥ g(x) for all x ∈ R2, and a for-

tiori, f(x) ≥ ⟨p, x⟩ ≥ g(x) for all x ∈ Z2. How-

ever, there exists no integral vector p ∈ Z2 such

that f(x) ≥ ⟨p, x⟩ ≥ g(x) for all x ∈ Z2. Note

also that f is M♮-convex and g is L-concave.

Network duality. A conjugate pair of M- and

L-convex functions can be transformed through

a network ([14, 17]; see also [25]). Let G = (V,A)

be a directed graph with arc set A and ver-

tex set V partitioned into three disjoint parts

as V = V + ∪ V 0 ∪ V −. For φa ∈ C1 (a ∈ A)

and M-convex f : ZV + → Z ∪ {+∞}, define

f̃ : ZV − → Z ∪ {±∞} by

f̃(y) = inf
ξ,x

{f(x) +
∑
a∈A

φa(ξ(a)) |

∂ξ = (x, 0,−y) ∈ ZV +∪V 0∪V −
, ξ ∈ ZA}.

For ψa ∈ C1 (a ∈ A) and L-convex g : ZV + →
Z ∪ {+∞}, define g̃ : ZV − → Z ∪ {±∞} by

g̃(q) = inf
η,p,r

{g(p) +
∑
a∈A

ψa(η(a)) | η = −δ(p, r, q),

η ∈ ZA, (p, r, q) ∈ ZV +∪V 0∪V −}.

Then f̃ is M-convex, provided that f̃ > −∞,

and g̃ is L-convex, provided that g̃ > −∞. If

g = f• and ψa = φa
• (a ∈ A), then g̃ = f̃•.

A special case (V + = V ) of the last state-

ment yields the network duality: inf{Φ(x, ξ) |
∂ξ = x, x ∈ ZV , ξ ∈ ZA} = sup{Ψ(p, η) |
η = −δp, p ∈ ZV , η ∈ ZA}, where Φ(x, ξ) =

f(x) +
∑

a∈A φa(ξ(a)), Ψ(p, η) = −g(p) −∑
a∈A ψa(η(a)) and the finiteness of inf Φ or

supΨ is assumed. The network duality is equiv-

alent to the Fenchel-type duality.

Subdifferentials. The subdifferential of f :

ZV → Z ∪ {+∞} at x ∈ dom f is defined by

{p ∈ RV | f(y)− f(x) ≥ ⟨p, y − x⟩ (∀y ∈ ZV )}.
The subdifferential of an L2- or M2-convex func-

tion forms an integral polyhedron. More specif-

ically:

• The subdifferential of an L-convex func-

tion is an integral base polyhedron (an M-

convex polyhedron).

• The subdifferential of an L2-convex func-

tion is the intersection of two integral base

polyhedra (M-convex polyhedra).

• The subdifferential of an M-convex func-

tion is an L-convex polyhedron.

• The subdifferential of an M2-convex func-

tion is the Minkowski sum of two L-convex

polyhedra.

Similar statements hold true with L and M re-

placed respectively by L♮ and M♮.

Algorithms. On the basis of the equivalence

of L♮-convex functions and submodular inte-

grally convex functions, the minimization of an

L-convex function can be done by the algo-

rithm of [5], which relies on the ellipsoid method.

The minimization of an M-convex function can

be done by purely combinatorial algorithms;

Fenchel-type duality→ Fenchel-type duality for M- and L-convex functions
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a greedy-type algorithm [2] for valuated ma-

troids and a domain reduction-type polynomial-

time algorithm [27] for M-convex functions. Al-

gorithms for duality of M-convex functions (in

other words, for M2-convex functions) are also

developed; polynomial algorithms [16, 24] for

valuated matroids, and a finite primal algorithm

[13] and a polynomial-time conjugate-scaling al-

gorithm [11] for the submodular flow problem.

Applications. A discrete analogue of the con-

jugate duality framework [23] for nonlinear opti-

mization is developed in [18]. An application of

M-convex functions to engineering system anal-

ysis and matrix theory is in [15, 19]. M-convex

functions find applications also in mathematical

economics [1].
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