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L-CONVEX FUNCTIONS AND M-
CONVEX FUNCTIONS
In the field of nonlinear program-

ming (in continuous variables) convex analysis
[22, 23] plays a pivotal role both in theory and
in practice. An analogous theory for discrete
optimization (nonlinear integer programming),
called “discrete convex analysis” [18, 17], is de-
veloped for L-convex and M-convex functions by
adapting the ideas in convex analysis and gen-
eralizing the results in matroid theory. The L-
and M-convex functions are introduced in [18]
and [13, 14], respectively.
Definitions of L- and M-convexity. Let V
be a nonempty finite set and Z be the set of in-
tegers. For any function g : Z¥ — Z U {+o0}
define domg = {p € ZV | g(p) < +oc}, called
the effective domain of g.

A function g : Z¥ — ZU{+oco} with dom g #
() is called L-convex if

gp)+9@) = gpVva)+9prag) (paeZ"),

IreZ: gp+1)=gp)+r (peiz’),

where p V ¢ = (max(p(v),q(v)) | v € V) € ZV,
p A q = (min(p(v),q(v)) | v € V) € Z", and 1
is the vector in Z" with all components being
equal to 1.

A set D C ZV is said to be an L-convex set if
its indicator function dp (defined by: dp(p) = 0
if p € D, and = 400 otherwise) is an L-convex
function, i.e., if (i) D # 0, (ii) p,g € D =
pVqgpANqg€e D, ,and (iii)pe D=p+1eD.

A function f : ZV — ZU{+o00} with dom f #
() is called M-convex if it satisfies

(M-EXC) For z,y € dom f and u € supp™ (v —
y), there exists v € supp™ (z — y) such that

f@)+ f(y) = f(@ = xu+Xo) + Y+ Xu — X0)

where, for any u € V, x, is the characteristic
vector of u (defined by: x,(v) =1 if v = u, and

L-convex— L-convex function

L-convez set

M-convex— M-convex function
M-convex set

integral Fenchel-Legendre transformation
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= 0 otherwise), and
suppT(z) = {veV]z@w) >0} (ze€Z"),
supp (2) = {veV]z(w) <0} (2€ZY).

A set B C ZV is said to be an M-convex set if
its indicator function is an M-convex function,
i.e., if B satisfies

(B-EXC) For z,y € B and for u € supp™ (z —y),
there exists v € supp™ (z —y) such that z — x, +
Xv € B and y + xu — Xv € B.

This means that an M-convex set is the same
as the set of integer points of the base polyhe-
dron of an integral submodular system (see [§]
for submodular systems).

L-convexity and M-convexity are conjugate to
each other under the integral Fenchel-Legendre
transformation f — f® defined by

f*(p) = sup{(p,z) — f(x) |z € Z"} (peZ"),

where (p,z) = > o p(v)xz(v). That is, for L-
convex function g and M-convex function f, it
holds [18] that ¢® is M-convex, f*® is L-convex,
g.. — g’ and f.. — f.

Example 1: Minimum cost flow problem.
L-convexity and M-convexity are inherent in the
integer minimum-cost flow problem, as pointed
out in [14, 18]. Let G = (V, A) be a graph with
vertex set V and arc set A, and let T' C V be
given. For £ : A — Z its boundary 0¢ : V — Z
is defined by

o) = > {&a)]acdtv}
—Y {éa) [acs v} (veV),

where §Tv and 6~ v denote the sets of out-going
and in-coming arcs incident to v, respectively.
For p : V — Z its coboundary ép : A — Z is
defined by

dp(a) = p(0"a) — p(0~a)

where 0" a and 0~ a mean the initial and termi-
nal vertices of a, respectively. Denote the class

(a € A4),
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of one-dimensional discrete convex functions by

Ci={p:Z—ZU{+oc0}|dome # 0,
et —1) +p(t+1) = 2p(t) (t € Z)}

For ¢, € C; (a € A), representing the arc-
cost in terms of flow, the total cost function
f:ZT — Z U {+0o0} defined by

flz) = igf{z va(&(a)) |
acA
06(v) = —a(v) (veT),

(W) =0(weV\T)} (zezh)

is M-convex, provided that f > —oo (i.e., f does
not take the value of —c0). For ¢, € C; (a € A),
representing the arc-cost in terms of tension, the
total cost function g : ZT — Z U {400} defined
by

9(p) = igf{z Ya(n(a)) | n = —0p,

acA
p(v) =p(v) (veT)}

is L-convex, provided that g > —oo. The two
cost functions f(z) and g(p) are conjugate to
each other in the sense that, if ¥, = ¢,* (a € A),
then g = f°.

Example 2: Polynomial matrix. Let A(s) be
an m xn matrix of rank m with each entry being
a polynomial in a variable s, and let B C 2" be
the family of bases of A(s) with respect to lin-

(pez”)

ear independence of the column vectors; namely,
J C V belongs to B if and only if |J| = m and
the column vectors with indices in J are linearly
independent. Then f : ZYV — Z U {400} defined
by

)= {

is M-convex, where y; € {0,1}V is the char-
acteristic vector of J (defined by: xj(v) = 1 if
v € J, and = 0 otherwise), A[J] denotes the
m X m submatrix with column indices in J € B,

—deg, det A[J]
400

(l‘ = XJ> J € B)
(otherwise)

and deg,(-) means the degree as a polynomial in
s. The Grassmann-Pliicker identity implies the
exchange property of f. This example was the
motivation of valuated matroids in [2, 3], which
in turn can be identified with the negative of
M-convex functions f with dom f C {0,1}V.
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For p = (p(v) | v € V) € ZV denote by D(p)
the diagonal matrix of order n = |V/| with diag-
onal elements sP(*) (v € V). Then the function
g:ZV — Z defined by

9(p) = max{deg, det(A- D(p))[J] | J € B}

is L-convex [17], where (A - D(p))[J] means the
m X m submatrix of A-D(p) with column indices
in J. We have g = f°.

L-convex sets. An L-convex set D C ZV has
“no holes” in the sense that D = DNZY, where
D denotes the convex hull of D in RY. Hence
it is natural to consider the polyhedral descrip-
tion of D, “L-convex polyhedron” (see [18, 17]).
For any function v : V x V — Z U {400} with
v(v,v) =0 (v € V), define

D(y) ={peR"|
p(v) = p(u) < y(u,v) (Vu,v € V)}

If D(y) # 0, D(y) is an integral polyhedron and
D =D(y)NZY is an L-convex set. If 7 satisfies
triangle inequality:

V(w,v) + (v, w) 2 y(w,w)  (u,v,w e V),

then D(v) # () and

v(u,v) = sup{p(v) — p(u) | p € D(v)}
(u,v € V).

Conversely, for any nonempty D C Z",

v(u,v) = sup{p(v) — p(u) | p € D} (u,v€V)

satisfies triangle inequality as well as (v, v) = 0
(v € V), and if D is L-convex, then D = D(y).
Thus there is a one-to-one correspondence be-
tween L-convex set D and function v satisfying
triangle inequality. In particular, D C ZV is L-
convex if and only if D = D(v) N ZY for some
~ satisfying triangle inequality. For L-convex
sets D1,Dy C ZV, it holds that D; + Dy =
D1+ Dy NZY and Dy N Dy = Dy N Ds.

It is also true that a function ~ satisfying
triangle inequality corresponds one-to-one to a
positively homogeneous M-convex function f
(i.e, f(Az) = A\f(x) for z € ZV and 0 < \ € Z).
The correspondence f — -y is given by

Y(u,v) = f(xo — xu) (w,v €V),
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whereas v — f by

f(z) = irif{ Z AupY (U, v) |

u,veV
Z )\uv(Xv - Xu) =7,

u,veV
0<Auw €Z (u,v€V)}
(xeZ").

The correspondence between L-convex sets and
positively homogeneous M-convex functions via
functions with triangle inequality is a special
case of the conjugacy relationship between L-
and M-convex functions.

M-convex sets. An M-convex set B C ZV has
“no holes” in the sense that B = BNZ" . Hence
it is natural to consider the polyhedral descrip-
tion of B, “M-convex polyhedron.” A set func-
tion p : 2V — ZU{+o0} is said to be submodular
if

p(X)+p(Y) = p(XUY)+p(XNY)
(X, Y V),
where the inequality is satisfied if p(X) or p(Y)
is equal to 4o00. It is assumed throughout that
p(0) = 0 and p(V) < +oo for any set function
p:2Y — ZU{+oo}. For a set function p, define
B(p) = {z€ RV |

z(X) < p(X) (VX C V), (V) = p(V)},

where z(X) = > {z(v) | v € X}. If p is submod-

ular, B(p) is a nonempty integral polyhedron,
B =B(p)NZ" is an M-convex set, and

p(X) = sup{z(X) | z € B(p)}

Conversely, for any nonempty B C ZV, define a
set function p by

(X CV).

p(X) = sup{a(X) |z € B} (X C V).

If B is M-convex, then p is submodular and
B = B(p). Thus there is a one-to-one corre-
spondence between M-convex set B and sub-
modular set function p. In particular, B C Z"
is M-convex if and only if B = B(p) N Z" for
some submodular p. The correspondence B < p
is a restatement of a well-known fact [4, 8.

submodular— submodular function
Lovdsz extension
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For M-convex sets By, By C ZV7 it holds that
B1+By = By + By NZY and BiNBy = By N Ba.

It is also true that a submodular set function p
corresponds one-to-one to a positively homoge-
neous L-convex function g. The correspondence
g — p is given by the restriction

p(X)=g(xx) (XCV)

(xx is the characteristic vector of X), whereas
p +— g by the Lovédsz extension (explained
below). The correspondence between M-convex
sets and positively homogeneous L-convex func-
tions via submodular set functions is a special
case of the conjugacy relationship between M-
and L-convex functions.

2V — Z U {+oa},
the Lovdsz extension [12] of p is a function
p:RY = RU{+00} defined by

For a set function p :

n

p(p) =D (pj —pir)p(V))

j=1

(peRY),

where, for each p € RY, the elements of V
are indexed as {vi,ve,---,v,} (with n = |V|)
in such a way that p(vi) > p(va) > --- >
plon); pj = p(vs), Vi = {vr,ve, - ,v;} for
j=1,---,n,and pp+1 = 0. The right-hand side
of the above expression is equal to +oo if and
only if p; — pj41 > 0 and p(V;) = +oo for some
7 with 1 < 5 < n — 1. The Lovész extension p
is indeed an extension of p, since p(xx) = p(X)
for X CV.

The relationship between submodularity and
convexity is revealed by the statement [12] that
a set function p is submodular if and only if its
Lovasz extension p is convex.

The restriction to ZY of the Lovisz exten-
sion of a submodular set function is a positively
homogeneous L-convex function, and any pos-
itively homogeneous L-convex function can be
obtained in this way [18].

Properties of L-convex functions. For any
g : ZV — ZU {400} and = € RV, define
gl—2z] : ZV — R U {+o0} by

gl—=](p) = g(p) — (p.z) (peZ").
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The set of the minimizers of g[—z] is denoted as
argmin (g[—x]).

Let g : ZV — Z U {400} be L-convex. Then
dom g is an L-convex set. For each p € dom g,

pp(X) = g(p + xx) (XCv)

is a submodular set function with p,() = 0 and
pp(V) < +o0.

An L-convex function g can be extended to a
convex function g : RV — R U {400} through
the Lovéasz extension of the submodular set func-

- g(p)

tions p, for p € domg. Namely, for p € domg
and ¢ € [0,1]", it holds [18] that

gp+q) = g(p)

n Z(qj — qi+1)(g(p + xv;) — 9(p)),

where, for each ¢, the elements of V' are indexed

as {vi,v2, -+ ,vp} (with n = |V]) in such a way
that g(v1) > q(v2) > --- > q(vn); g5 = q(vy),
Vi = {vi,v9, -+ ,v5} for j = 1,---,n, and

gn+1 = 0. The expression of g shows that an
L-convex function is an integrally convex func-
tion in the sense of [5].

An L-convex function g enjoys discrete mid-
point convexity:

oo () o )

for p,q € ZV, where [p] (or |p]) for any p € RV
denotes the vector obtained by rounding up (or
down) the components of p to the nearest inte-
gers.

The minimum of an L-convex function g is
characterized by the local minimality in the
sense that, for p € domg, g(p) < g(q) for all
g € ZV if and only if g(p+1) = g(p) < g(p+xx)
forall X C V.

The minimizers of an L-convex function, if
nonempty, forms an L-convex set. For any = €
RV, argmin (g[—z]), if nonempty, is an L-convex
set. Conversely, this property characterizes L-
convex functions, under an auxiliary assumption
that the function can be extented to a convex
function over RV (cf. [20]).

A number of operations can be defined for L-
convex functions [18, 17]. For x € ZV, g[—x] is

discrete midpoint convexity
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an L-convex function. For a € ZV and 8 € Z,
g(a+ Bp) is L-convex in p. For U C V|, the pro-
jection of g to U:

V') = inf{g(p',p") | p" € ZV\U} (p/ € ZY)

is L-convex in p’, provided that gV > —oo. For
wv S Cl (U S V),

9

Q)+ Y u(p(v

veV

g9(p) = inf |g(q ) —a(v))

qE€Z
is L-convex in p € Z", provided that § > —oo.
The sum of two (or more) L-convex functions is
L-convex, provided that its effective domain is
nonempty.
Properties of M-convex functions. Let f :
ZV — Z U {400} be M-convex. Then dom f is
an M-convex set. For each x € dom f,

f(z)

satisfies [17] triangle inequality.

’Ym(uﬂ}):f(x_)(u‘i‘)(v)_ (U7U€V)

An M-convex function f can be extended to
a convex function f : R¥ — R U {+o0}, and
the value of f(z) for x € R" is determined by
{f(y) |y € ZV, |z] <y < [x]}. That is, an M-
convex function is an integrally convex function
in the sense of [5].

The minimum of an M-convex function f
is characterized by the local minimality in the
sense that for z € dom f, f(z) < f(y) for all
y € ZV if and only if f(x) < f(z — xu + Xv) for
all u,v € V [13, 14, 18].

The minimizers of an M-convex function, if
nonempty, forms an M-convex set. Moreover, for
any p € RV, argmin (f]
M-convex set. Conversely, this property charac-
terizes M-convex functions, under an auxiliary

—p]), if nonempty, is an

assumption that the effective domain is bounded
or the function can be extented to a convex func-
tion over RV (see [14, 18]).

The level set of an M-convex function is not
necessarily an M-convex set, but enjoys a weaker
exchange property. Namely, for any p € RV and
a€R,S={xeZ"| fl-p(x) < a} (the
level set of f[—p]) satisfies: For z,y € S and for
u € suppt (z — y), there exists v € supp™ (z — y)
such that either x — x4+ Xx0v € S or Y+ Xu— X0 €
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S. Conversely, this property characterizes M-
convex functions [26].

A number of operations can be defined for M-
convex functions [18, 17]. For p € ZY, f[—p] is
an M-convex function. For a € ZV, f(a—z) and
f(a + z) are M-convex in z. For U C V, the
restriction of f to U:

fo@) =f@,00ny) (' €2ZY)

(where Oy is the zero vector in ZV\U) is M-
convex in z’, provided that dom fy # (). For
v €C (VeEV),

f(z) = f2) + Y pula(v)) (ze2Z")

veV

is M-convex, provided that dom f = (). In par-
ticular, a separable convex function f(z) =
> ver Polz(v)) with dom f being an M-convex
set is an M-convex function. For two M-convex
functions f1 and fs, the integral convolution

(10f2)(2) = mf{f1(z1) + fa(w2) |

T =x1+ T2 X1, %0 € ZV} (x € ZV)

is either M-convex or else (fif2)(z) = +oo for
all z € ZV.

Sum of two M-convex functions is not neces-

sarily M-convex; such function with nonempty
effective domain is called Ms-convex. Convolu-
tion of two L-convex functions is not necessar-
ily L-convex; such function with nonempty ef-
fective domain is called Ly-conver. Ms- and Lo-
convex functions are in one-to-one correspon-
dence through the integral Fenchel-Legendre
transformation.
L’- and M!-convexity. L% and M?convexity
are variants of, and essentially equivalent to,
L- and M-convexity, respectively. Li- and M-
convex functions are introduced in [9] and [21],
respectively.

Let vy be a new element not in V and define
V ={vw}UV. A function g : Z¥ — Z U {+o0}
with domg # 0 is called Li-convez if it is ex-
pressed in terms of an L-convex function g :
ZV — Z U {+oc} as g(p) = §(0,p). Namely,

Ms-convex— Ma-convex function

Lo-convex— La-convex function
LA -convez— LF-convex function
L -conver set

M _conver— MP-convex function
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an Lf-convex function is a function obtained as
the restriction of an L-convex function. Con-
versely, an Li-convex function determines the
corresponding L-convex function up to the con-
stant 7 in the definition of L-convex function.

An Li-convex function is essentially the same
as a submodular integrally convex function of
[5], and hence is characterized by discrete mid-
point convexity [9]. An L-convex function, enjoy-
ing discrete midpoint convexity, is an Li-convex
function.

Quadratic function

n n
9(p) = aiypip; (p€Z")
i=1 j=1
with a;; = aj; € Z is Lf-convex if and only if
a;; <0 (i #j)and 370 a;; >0 (i=1,---,n).
For {¢; € C; |i=1,--- ,n}, a separable convex
function

gp) = vilp:) (peZ)
=1

is Li-convex.

The properties of L-convex functions men-
tioned above are carried over, mutatis mutan-
dis, to Li-convex functions. In addition, the re-
striction of an Li-convex function g to U C V,
denoted gy, is Li-convex.

A subset of ZV is called an LP-convez set if
its indicator function is an Li-convex function.
A set E C ZV is an Li-convex set if and only if

p+qw Vﬂrq

EF = — E.
pace — [129] |21

A function f : ZV — ZU{+o0} with dom f #
0 is called M?-convez if it is expressed in terms
of an M-convex function f : ZV — ZU{+o0} as

~ { flx) if zo+ Zueva@(u) =0

f(xo, ) = +00  otherwise.

Namely, an M?-convex function is a function ob-
tained as the projection of an M-convex func-
tion. Conversely, an Mf-convex function deter-
mines the corresponding M-convex function up
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to a translation of dom f in the direction of vy.
A function f : ZYV — Z U {+o0o} with dom f # 0
is MP-convex if and only if (see [21]) it satisfies

(MP-EXC) For z,y € dom f and u € supp™ (z —
Y),
f(@) + f(y)

> min| f(z — xu) + F(y + Xu),

min

- {f(fz — Xu T Xv)
vEsupp~ (z—y)

+f(y+Xu_Xv)}]'

Since (M-EXC) implies (M!-EXC), an M-convex
function is an Mf-convex function.
Quadratic function

flz) = Zn: aiziZ +b Z TiT;
i=1

1<j

(z € Z")

with a; € Z (1 < i < n), b € Z is M=
convex if 0 < b < 2minj<;<na; (cf. [21]). For
{901661|Z:011a

form

,n}, a function of the

n

F@)=¢o(Y_zi) + Y pilzi) (xeZ)
=1

=1 =

is M%-convex [21]; a separable convex function
is a special case of this (with ¢o = 0). More
generally, for {px € C; | X € T} indexed by a
laminar family 7 C 2", the function

flx) =) ex(@(X)) (xeZ’)

XeT

is MP-convex [1], where T is called laminar if for
any X,Y € T, at least one of X NY, X \Y,
Y \ X is empty.

The properties of M-convex functions men-
tioned above are carried over, mutatis mutandis,
to Mf-convex functions. In addition, the projec-
tion of an Mf-convex function f to U C V, de-
noted fY, is Mi-convex.

A subset of ZV is called an M?-convex set if
its indicator function is an MP-convex function.
A set Q@ C ZV is an Mi-convex set if and only
if @) is the set of integer points of an integral

M? -convez set
L-separation theorem
M-separation theorem
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generalized polymatroid (cf. [7] for generalized
polymatroids).

As a consequence of the conjugacy between L-

and M-convexity, Li-convex functions and M?-
convex functions are conjugate to each other
under the integral Fenchel-Legendre transforma-
tion.
Duality. Discrete duality theorems hold true
for L-convex/concave and M-convex/concave
functions. A function g : Z¥ — Z U {—o0} is
called L-concave (resp., Li-, M-, or MP-concave)
if —g is L-convex (resp., L%, M-, or Mf-convex);
dom g means the effective domain of —g. The
concave counterpart of the discrete Fenchel-
Legendre transform is defined as

9°(p) = inf{(p,z) — g(x) | 2 € Z"}

A discrete
convex/concave functions, named L-separation
theorem [18] (see also [10]), reads as follows.
Let f : ZV — Z U {4+0c0} be an Li-convex
function and g : Z¥ — Z U {—oc0} be an L
concave function such that dom f Ndomg # ()
or dom f*Ndom g° # 0. If f(p) > g(p) (p € Z"),
there exist 8* € Z and z* € ZV such that

f(p) = "+ (p,z%) > g(p)

Since a submodular set function can be
identified with a positively homogeneous L-

(pez).

separation theorem for L-

(pez¥).

convex function, the L-separation theorem im-
plies Frank’s discrete separation theorem for a
pair of sub/supermodular functions [6], which
reads as follows. Let p : 2V — Z U {400} and
p:2Y = Z U {—o0} be submodular and su-
permodular functions, respectively, with p(()) =
w(@) =0, p(V) < 400, u(V) > —oo, where p
is called supermodular if —u is submodular. If
p(X) > u(X) (X C V), there exists z* € ZY
such that

p(X) = 2*(X) = p(X) (X CV).

Another discrete separation theorem, M-
separation theorem [14, 18] (see also [10]), holds
true for M-convex/concave functions. Namely,
let f: ZY — Z U {+oo} be an MP-convex
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function and g : Z¥ — Z U {—occ} be an M"-
concave function such that dom f Ndomg #
or dom f*Ndom ¢° # 0. If f(z) > g(z) (x € ZV),
there exist a* € Z and p* € ZV such that

flz) > o + (p*,2) > g(z) (zeZY).

The L- and M-separation theorems are conju-
gate to each other, while a self-conjugate state-
ment can be made in the form of the Fenchel-
type duality [14, 18], as follows. Let f : ZV —
Z U {+o00} be an Li-convex function and g :
ZV — ZU{—0o0} be an Li-concave function such
that dom fNdom g # 0 or dom f* Ndom ¢g° # 0.
Then it holds that

inf{f(p) — g(p) | p € Z"}
= sup{g°(z) — f*(z) |z € Z"}.

Moreover, if this common value is finite, the in-
fimum is attained by some p € dom f N dom g
and the supremum is attained by some z €
dom f* Ndom g°.

Here is a simple example to illustrate the
subtlety of discrete separation for discrete func-
tions. Functions f : Z2> - Z and ¢ : Z°> — Z
defined by f(x1,7z2) = max(0,z1 + z2) and
g(z1,22) = min(z1, z2) can be extended respec-
tively to a convex function f : R? = R and a
concave function g : R? — R according to the
defining expressions. With p = (2, %), we have
f(x) > (p,x) > g(x) for all z € R?, and a for-
tiori, f(z) > (p,z) > g(x) for all z € Z2. How-
ever, there exists no integral vector p € Z? such
that f(z) > (p,x) > g(z) for all z € Z%. Note
also that f is Mf-convex and ¢ is L-concave.
Network duality. A conjugate pair of M- and
L-convex functions can be transformed through
a network ([14, 17]; see also [25]). Let G = (V, A)
be a directed graph with arc set A and ver-
tex set V partitioned into three disjoint parts
as V =V+tuVouV~. For ¢, € C (a € A)
and M-convex f : ZV" — Z U {+oo}, define
f:Z"V = ZU{+c} by

fly) = inf{f(2) + 3 vale
a€A
9€ = (2,0, —y) € ZV UV e e 74),
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For 1, € C1 (a € A) and L-convex g : ZV" —
Z U {400}, define §: ZV~ — Z U {+oo} by

g( ) = ll’lf {g +Zd}a _5(p>T7Q)a
acA
ez, (prq) ez VNV

Then f is M-convex, provided that f > —00,
and g is L-convex, provided that g > —oo. If
g = f* and ¥, = p.* (a € A), then § = f°.
A special case (VT = V) of the last state-
ment yields the network duality: inf{®(z,&) |
0¢ = zx € ZV,¢ € Z4) = sup{¥(p,n) |
n = —op,p € ZV,n € Z4}, where ®(z,£) =
(@) + Xpeavaléla)), ¥(p,n) = —glp) -
Y acaPa(n(a)) and the finiteness of inf® or
sup ¥ is assumed. The network duality is equiv-
alent to the Fenchel-type duality.
Subdifferentials. The subdifferential of f :
ZV — Z U {+oc} at x € dom f is defined by
{peRY | fly) = fx) = (py—z) (Vy € ZV)}.
The subdifferential of an Lg- or My-convex func-
tion forms an integral polyhedron. More specif-
ically:

e The subdifferential of an L-convex func-
tion is an integral base polyhedron (an M-
convex polyhedron).

e The subdifferential of an Ls-convex func-
tion is the intersection of two integral base
polyhedra (M-convex polyhedra).

e The subdifferential of an M-convex func-
tion is an L-convex polyhedron.

e The subdifferential of an Ms-convex func-
tion is the Minkowski sum of two L-convex
polyhedra.

Similar statements hold true with L and M re-
placed respectively by L? and M.

Algorithms. On the basis of the equivalence
of Lf-convex functions and submodular inte-
grally convex functions, the minimization of an
L-convex function can be done by the algo-
rithm of [5], which relies on the ellipsoid method.
The minimization of an M-convex function can
be done by purely combinatorial algorithms;

Fenchel-type duality— Fenchel-type duality for M- and L-convex functions
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a greedy-type algorithm [2] for valuated ma-
troids and a domain reduction-type polynomial-
time algorithm [27] for M-convex functions. Al-
gorithms for duality of M-convex functions (in
other words, for Ma-convex functions) are also
developed; polynomial algorithms [16, 24] for
valuated matroids, and a finite primal algorithm
[13] and a polynomial-time conjugate-scaling al-
gorithm [11] for the submodular flow problem.

Applications. A discrete analogue of the con-
jugate duality framework [23] for nonlinear opti-
mization is developed in [18]. An application of
M-convex functions to engineering system anal-
ysis and matrix theory is in [15, 19]. M-convex
functions find applications also in mathematical
economics [1].
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