L-CONVEX FUNCTIONS AND M-CONVEX FUNCTIONS

In the field of nonlinear programming (in continuous variables) convex analysis [22, 23] plays a pivotal role both in theory and in practice. An analogous theory for discrete optimization (nonlinear integer programming), called "discrete convex analysis" [18, 17], is developed for L-convex and M-convex functions by adapting the ideas in convex analysis and generalizing the results in matroid theory. The Land M-convex functions are introduced in [18] and [13, 14], respectively.

Definitions of L- and M-convexity. Let V be a nonempty finite set and \mathbf{Z} be the set of integers. For any function $g : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ define dom $g = \{p \in \mathbf{Z}^V \mid g(p) < +\infty\}$, called the effective domain of g.

A function $g : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ with dom $g \neq \emptyset$ is called *L*-convex if

$$g(p) + g(q) \ge g(p \lor q) + g(p \land q) \quad (p, q \in \mathbf{Z}^V),$$
$$\exists r \in \mathbf{Z} : g(p + \mathbf{1}) = g(p) + r \quad (p \in \mathbf{Z}^V),$$

where $p \lor q = (\max(p(v), q(v)) | v \in V) \in \mathbf{Z}^V$, $p \land q = (\min(p(v), q(v)) | v \in V) \in \mathbf{Z}^V$, and **1** is the vector in \mathbf{Z}^V with all components being equal to 1.

A set $D \subseteq \mathbf{Z}^V$ is said to be an *L*-convex set if its indicator function δ_D (defined by: $\delta_D(p) = 0$ if $p \in D$, and $= +\infty$ otherwise) is an L-convex function, i.e., if (i) $D \neq \emptyset$, (ii) $p, q \in D \Rightarrow$ $p \lor q, p \land q \in D$, and (iii) $p \in D \Rightarrow p \pm \mathbf{1} \in D$.

A function $f : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ with dom $f \neq \emptyset$ is called *M*-convex if it satisfies

(M-EXC) For $x, y \in \text{dom } f$ and $u \in \text{supp}^+(x - y)$, there exists $v \in \text{supp}^-(x - y)$ such that

$$f(x) + f(y) \ge f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v)$$

where, for any $u \in V$, χ_u is the characteristic vector of u (defined by: $\chi_u(v) = 1$ if v = u, and

 $\textit{L-convex} \rightarrow \textit{L-convex function}$

L-convex set

 $M\text{-}convex \rightarrow M\text{-}convex \ function$ $M\text{-}convex \ set$

integral Fenchel-Legendre transformation

= 0 otherwise), and

$$\sup p^+(z) = \{ v \in V \mid z(v) > 0 \} \quad (z \in \mathbf{Z}^V), \\ \sup p^-(z) = \{ v \in V \mid z(v) < 0 \} \quad (z \in \mathbf{Z}^V).$$

A set $B \subseteq \mathbf{Z}^V$ is said to be an *M*-convex set if its indicator function is an M-convex function, i.e., if *B* satisfies

(B-EXC) For $x, y \in B$ and for $u \in \text{supp}^+(x-y)$, there exists $v \in \text{supp}^-(x-y)$ such that $x - \chi_u + \chi_v \in B$ and $y + \chi_u - \chi_v \in B$.

This means that an M-convex set is the same as the set of integer points of the base polyhedron of an integral submodular system (see [8] for submodular systems).

L-convexity and M-convexity are conjugate to each other under the *integral Fenchel-Legendre* transformation $f \mapsto f^{\bullet}$ defined by

$$f^{\bullet}(p) = \sup\{\langle p, x \rangle - f(x) \mid x \in \mathbf{Z}^V\} \quad (p \in \mathbf{Z}^V),$$

where $\langle p, x \rangle = \sum_{v \in V} p(v)x(v)$. That is, for L-convex function g and M-convex function f, it holds [18] that g^{\bullet} is M-convex, f^{\bullet} is L-convex, $g^{\bullet \bullet} = g$, and $f^{\bullet \bullet} = f$.

Example 1: Minimum cost flow problem. L-convexity and M-convexity are inherent in the integer minimum-cost flow problem, as pointed out in [14, 18]. Let G = (V, A) be a graph with vertex set V and arc set A, and let $T \subseteq V$ be given. For $\xi : A \to \mathbf{Z}$ its boundary $\partial \xi : V \to \mathbf{Z}$ is defined by

$$\begin{array}{lll} \partial \xi(v) & = & \sum \{\xi(a) \mid a \in \delta^+ v\} \\ & & - \sum \{\xi(a) \mid a \in \delta^- v\} \quad (v \in V), \end{array}$$

where $\delta^+ v$ and $\delta^- v$ denote the sets of out-going and in-coming arcs incident to v, respectively. For $\tilde{p}: V \to \mathbf{Z}$ its coboundary $\delta \tilde{p}: A \to \mathbf{Z}$ is defined by

$$\delta \tilde{p}(a) = \tilde{p}(\partial^+ a) - \tilde{p}(\partial^- a) \quad (a \in A),$$

where $\partial^+ a$ and $\partial^- a$ mean the initial and terminal vertices of a, respectively. Denote the class of one-dimensional discrete convex functions by

$$\mathcal{C}_1 = \{ \varphi : \mathbf{Z} \to \mathbf{Z} \cup \{+\infty\} \mid \operatorname{dom} \varphi \neq \emptyset, \\ \varphi(t-1) + \varphi(t+1) \ge 2\varphi(t) \ (t \in \mathbf{Z}) \}$$

For $\varphi_a \in \mathcal{C}_1$ $(a \in A)$, representing the arccost in terms of flow, the total cost function $f: \mathbf{Z}^T \to \mathbf{Z} \cup \{+\infty\}$ defined by

$$f(x) = \inf_{\xi} \{ \sum_{a \in A} \varphi_a(\xi(a)) \mid \\ \partial \xi(v) = -x(v) \ (v \in T), \\ \partial \xi(v) = 0 \ (v \in V \setminus T) \} \quad (x \in \mathbf{Z}^T) \}$$

is M-convex, provided that $f > -\infty$ (i.e., f does not take the value of $-\infty$). For $\psi_a \in \mathcal{C}_1$ $(a \in A)$, representing the arc-cost in terms of tension, the total cost function $g : \mathbf{Z}^T \to \mathbf{Z} \cup \{+\infty\}$ defined by

$$g(p) = \inf_{\tilde{p}} \{ \sum_{a \in A} \psi_a(\eta(a)) \mid \eta = -\delta \tilde{p}, \\ \tilde{p}(v) = p(v) \ (v \in T) \} \quad (p \in \mathbf{Z}^T) \}$$

is L-convex, provided that $g > -\infty$. The two cost functions f(x) and g(p) are conjugate to each other in the sense that, if $\psi_a = \varphi_a^{\bullet}$ $(a \in A)$, then $g = f^{\bullet}$.

Example 2: Polynomial matrix. Let A(s) be an $m \times n$ matrix of rank m with each entry being a polynomial in a variable s, and let $\mathcal{B} \subseteq 2^V$ be the family of bases of A(s) with respect to linear independence of the column vectors; namely, $J \subseteq V$ belongs to \mathcal{B} if and only if |J| = m and the column vectors with indices in J are linearly independent. Then $f : \mathbb{Z}^V \to \mathbb{Z} \cup \{+\infty\}$ defined by

$$f(x) = \begin{cases} -\deg_s \det A[J] & (x = \chi_J, J \in \mathcal{B}) \\ +\infty & (\text{otherwise}) \end{cases}$$

is M-convex, where $\chi_J \in \{0,1\}^V$ is the characteristic vector of J (defined by: $\chi_J(v) = 1$ if $v \in J$, and = 0 otherwise), A[J] denotes the $m \times m$ submatrix with column indices in $J \in \mathcal{B}$, and $\deg_s(\cdot)$ means the degree as a polynomial in s. The Grassmann-Plücker identity implies the exchange property of f. This example was the motivation of valuated matroids in [2, 3], which in turn can be identified with the negative of M-convex functions f with dom $f \subseteq \{0,1\}^V$. For $p = (p(v) | v \in V) \in \mathbf{Z}^V$ denote by D(p)the diagonal matrix of order n = |V| with diagonal elements $s^{p(v)}$ ($v \in V$). Then the function $g: \mathbf{Z}^V \to \mathbf{Z}$ defined by

$$g(p) = \max\{\deg_s \det(A \cdot D(p))[J] \mid J \in \mathcal{B}\}$$

is L-convex [17], where $(A \cdot D(p))[J]$ means the $m \times m$ submatrix of $A \cdot D(p)$ with column indices in J. We have $g = f^{\bullet}$.

L-convex sets. An L-convex set $D \subseteq \mathbf{Z}^V$ has "no holes" in the sense that $D = \overline{D} \cap \mathbf{Z}^V$, where \overline{D} denotes the convex hull of D in \mathbf{R}^V . Hence it is natural to consider the polyhedral description of \overline{D} , "L-convex polyhedron" (see [18, 17]). For any function $\gamma: V \times V \to \mathbf{Z} \cup \{+\infty\}$ with $\gamma(v, v) = 0$ ($v \in V$), define

$$\mathbf{D}(\gamma) = \{ p \in \mathbf{R}^V \mid p(v) - p(u) \le \gamma(u, v) \; (\forall u, v \in V) \}.$$

If $\mathbf{D}(\gamma) \neq \emptyset$, $\mathbf{D}(\gamma)$ is an integral polyhedron and $D = \mathbf{D}(\gamma) \cap \mathbf{Z}^V$ is an L-convex set. If γ satisfies triangle inequality:

$$\gamma(u,v) + \gamma(v,w) \ge \gamma(u,w) \quad (u,v,w \in V),$$

then $\mathbf{D}(\gamma) \neq \emptyset$ and

$$\gamma(u, v) = \sup\{p(v) - p(u) \mid p \in \mathbf{D}(\gamma)\}\$$
$$(u, v \in V).$$

Conversely, for any nonempty $D \subseteq \mathbf{Z}^V$,

$$\gamma(u, v) = \sup\{p(v) - p(u) \mid p \in D\} \ (u, v \in V)$$

satisfies triangle inequality as well as $\gamma(v, v) = 0$ $(v \in V)$, and if D is L-convex, then $\overline{D} = \mathbf{D}(\gamma)$. Thus there is a one-to-one correspondence between L-convex set D and function γ satisfying triangle inequality. In particular, $D \subseteq \mathbf{Z}^V$ is Lconvex if and only if $D = \mathbf{D}(\gamma) \cap \mathbf{Z}^V$ for some γ satisfying triangle inequality. For L-convex sets $D_1, D_2 \subseteq \mathbf{Z}^V$, it holds that $D_1 + D_2 = \overline{D_1 + D_2} \cap \mathbf{Z}^V$ and $\overline{D_1} \cap \overline{D_2} = \overline{D_1 \cap D_2}$.

It is also true that a function γ satisfying triangle inequality corresponds one-to-one to a positively homogeneous M-convex function f(i.e, $f(\lambda x) = \lambda f(x)$ for $x \in \mathbf{Z}^V$ and $0 \leq \lambda \in \mathbf{Z}$). The correspondence $f \mapsto \gamma$ is given by

$$\gamma(u,v) = f(\chi_v - \chi_u) \quad (u,v \in V),$$

whereas $\gamma \mapsto f$ by

$$f(x) = \inf_{\lambda} \{ \sum_{u,v \in V} \lambda_{uv} \gamma(u,v) \mid \\ \sum_{u,v \in V} \lambda_{uv} (\chi_v - \chi_u) = x, \\ 0 \le \lambda_{uv} \in \mathbf{Z} \ (u,v \in V) \} \\ (x \in \mathbf{Z}^V).$$

The correspondence between L-convex sets and positively homogeneous M-convex functions via functions with triangle inequality is a special case of the conjugacy relationship between Land M-convex functions.

M-convex sets. An M-convex set $B \subseteq \mathbf{Z}^V$ has "no holes" in the sense that $B = \overline{B} \cap \mathbf{Z}^V$. Hence it is natural to consider the polyhedral description of \overline{B} , "M-convex polyhedron." A set function $\rho: 2^V \to \mathbf{Z} \cup \{+\infty\}$ is said to be *submodular* if

$$\rho(X) + \rho(Y) \ge \rho(X \cup Y) + \rho(X \cap Y)$$
$$(X, Y \subseteq V),$$

where the inequality is satisfied if $\rho(X)$ or $\rho(Y)$ is equal to $+\infty$. It is assumed throughout that $\rho(\emptyset) = 0$ and $\rho(V) < +\infty$ for any set function $\rho: 2^V \to \mathbf{Z} \cup \{+\infty\}$. For a set function ρ , define

$$\mathbf{B}(\rho) = \{ x \in \mathbf{R}^V \mid \\ x(X) \le \rho(X) \ (\forall X \subset V), x(V) = \rho(V) \}$$

where $x(X) = \sum \{x(v) \mid v \in X\}$. If ρ is submodular, $\mathbf{B}(\rho)$ is a nonempty integral polyhedron, $B = \mathbf{B}(\rho) \cap \mathbf{Z}^V$ is an M-convex set, and

$$\rho(X) = \sup\{x(X) \mid x \in \mathbf{B}(\rho)\} \quad (X \subseteq V).$$

Conversely, for any nonempty $B \subseteq \mathbf{Z}^V$, define a set function ρ by

$$\rho(X) = \sup\{x(X) \mid x \in B\} \quad (X \subseteq V).$$

If B is M-convex, then ρ is submodular and $\overline{B} = \mathbf{B}(\rho)$. Thus there is a one-to-one correspondence between M-convex set B and submodular set function ρ . In particular, $B \subseteq \mathbf{Z}^V$ is M-convex if and only if $B = \mathbf{B}(\rho) \cap \mathbf{Z}^V$ for some submodular ρ . The correspondence $B \leftrightarrow \rho$ is a restatement of a well-known fact [4, 8]. For M-convex sets $B_1, B_2 \subseteq \mathbf{Z}^V$, it holds that $B_1+B_2 = \overline{B_1+B_2} \cap \mathbf{Z}^V$ and $\overline{B_1} \cap \overline{B_2} = \overline{B_1 \cap B_2}$.

It is also true that a submodular set function ρ corresponds one-to-one to a positively homogeneous L-convex function g. The correspondence $g \mapsto \rho$ is given by the restriction

$$\rho(X) = g(\chi_X) \quad (X \subseteq V)$$

 $(\chi_X \text{ is the characteristic vector of } X)$, whereas $\rho \mapsto g$ by the Lovász extension (explained below). The correspondence between M-convex sets and positively homogeneous L-convex functions via submodular set functions is a special case of the conjugacy relationship between M-and L-convex functions.

For a set function $\rho : 2^V \to \mathbf{Z} \cup \{+\infty\}$, the *Lovász extension* [12] of ρ is a function $\hat{\rho} : \mathbf{R}^V \to \mathbf{R} \cup \{+\infty\}$ defined by

$$\hat{\rho}(p) = \sum_{j=1}^{n} (p_j - p_{j+1}) \rho(V_j) \quad (p \in \mathbf{R}^V),$$

where, for each $p \in \mathbf{R}^V$, the elements of Vare indexed as $\{v_1, v_2, \dots, v_n\}$ (with n = |V|) in such a way that $p(v_1) \ge p(v_2) \ge \dots \ge$ $p(v_n)$; $p_j = p(v_j)$, $V_j = \{v_1, v_2, \dots, v_j\}$ for $j = 1, \dots, n$, and $p_{n+1} = 0$. The right-hand side of the above expression is equal to $+\infty$ if and only if $p_j - p_{j+1} > 0$ and $\rho(V_j) = +\infty$ for some j with $1 \le j \le n - 1$. The Lovász extension $\hat{\rho}$ is indeed an extension of ρ , since $\hat{\rho}(\chi_X) = \rho(X)$ for $X \subseteq V$.

The relationship between submodularity and convexity is revealed by the statement [12] that a set function ρ is submodular if and only if its Lovász extension $\hat{\rho}$ is convex.

The restriction to \mathbf{Z}^V of the Lovász extension of a submodular set function is a positively homogeneous L-convex function, and any positively homogeneous L-convex function can be obtained in this way [18].

Properties of L-convex functions. For any $g : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ and $x \in \mathbf{R}^V$, define $g[-x]: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ by

$$g[-x](p) = g(p) - \langle p, x \rangle \quad (p \in \mathbf{Z}^V)$$

 $submodular \rightarrow submodular function$

Lovász extension

The set of the minimizers of g[-x] is denoted as argmin (g[-x]).

Let $g : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ be L-convex. Then dom g is an L-convex set. For each $p \in \text{dom } g$,

$$\rho_p(X) = g(p + \chi_X) - g(p) \quad (X \subseteq V)$$

is a submodular set function with $\rho_p(\emptyset) = 0$ and $\rho_p(V) < +\infty$.

An L-convex function g can be extended to a convex function $\overline{g} : \mathbf{R}^V \to \mathbf{R} \cup \{+\infty\}$ through the Lovász extension of the submodular set functions ρ_p for $p \in \text{dom } g$. Namely, for $p \in \text{dom } g$ and $q \in [0, 1]^V$, it holds [18] that

$$\overline{g}(p+q) = g(p) + \sum_{j=1}^{n} (q_j - q_{j+1})(g(p+\chi_{V_j}) - g(p)),$$

where, for each q, the elements of V are indexed as $\{v_1, v_2, \dots, v_n\}$ (with n = |V|) in such a way that $q(v_1) \ge q(v_2) \ge \dots \ge q(v_n)$; $q_j = q(v_j)$, $V_j = \{v_1, v_2, \dots, v_j\}$ for $j = 1, \dots, n$, and $q_{n+1} = 0$. The expression of \overline{g} shows that an L-convex function is an integrally convex function in the sense of [5].

An L-convex function g enjoys discrete midpoint convexity:

$$g(p) + g(q) \ge g\left(\left\lceil \frac{p+q}{2} \right\rceil\right) + g\left(\left\lfloor \frac{p+q}{2} \right\rfloor\right)$$

for $p, q \in \mathbf{Z}^V$, where $\lceil p \rceil$ (or $\lfloor p \rfloor$) for any $p \in \mathbf{R}^V$ denotes the vector obtained by rounding up (or down) the components of p to the nearest integers.

The minimum of an L-convex function g is characterized by the local minimality in the sense that, for $p \in \text{dom } g$, $g(p) \leq g(q)$ for all $q \in \mathbf{Z}^V$ if and only if $g(p+1) = g(p) \leq g(p+\chi_X)$ for all $X \subseteq V$.

The minimizers of an L-convex function, if nonempty, forms an L-convex set. For any $x \in \mathbf{R}^V$, argmin (g[-x]), if nonempty, is an L-convex set. Conversely, this property characterizes Lconvex functions, under an auxiliary assumption that the function can be extended to a convex function over \mathbf{R}^V (cf. [20]).

A number of operations can be defined for Lconvex functions [18, 17]. For $x \in \mathbf{Z}^V$, g[-x] is discrete midpoint convexity an L-convex function. For $a \in \mathbf{Z}^V$ and $\beta \in \mathbf{Z}$, $g(a + \beta p)$ is L-convex in p. For $U \subseteq V$, the projection of g to U:

$$g^{U}(p') = \inf\{g(p', p'') \mid p'' \in \mathbf{Z}^{V \setminus U}\} \quad (p' \in \mathbf{Z}^{U})$$

is L-convex in p', provided that $g^U > -\infty$. For $\psi_v \in \mathcal{C}_1 \ (v \in V)$,

$$\tilde{g}(p) = \inf_{q \in \mathbf{Z}^V} \left[g(q) + \sum_{v \in V} \psi_v(p(v) - q(v)) \right]$$

is L-convex in $p \in \mathbf{Z}^V$, provided that $\tilde{g} > -\infty$. The sum of two (or more) L-convex functions is L-convex, provided that its effective domain is nonempty.

Properties of M-convex functions. Let $f : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ be M-convex. Then dom f is an M-convex set. For each $x \in \text{dom } f$,

$$\gamma_x(u,v) = f(x - \chi_u + \chi_v) - f(x) \quad (u,v \in V)$$

satisfies [17] triangle inequality.

An M-convex function f can be extended to a convex function $\overline{f} : \mathbf{R}^V \to \mathbf{R} \cup \{+\infty\}$, and the value of $\overline{f}(x)$ for $x \in \mathbf{R}^V$ is determined by $\{f(y) \mid y \in \mathbf{Z}^V, \lfloor x \rfloor \leq y \leq \lceil x \rceil\}$. That is, an Mconvex function is an integrally convex function in the sense of [5].

The minimum of an M-convex function fis characterized by the local minimality in the sense that for $x \in \text{dom } f$, $f(x) \leq f(y)$ for all $y \in \mathbf{Z}^V$ if and only if $f(x) \leq f(x - \chi_u + \chi_v)$ for all $u, v \in V$ [13, 14, 18].

The minimizers of an M-convex function, if nonempty, forms an M-convex set. Moreover, for any $p \in \mathbf{R}^V$, argmin (f[-p]), if nonempty, is an M-convex set. Conversely, this property characterizes M-convex functions, under an auxiliary assumption that the effective domain is bounded or the function can be extended to a convex function over \mathbf{R}^V (see [14, 18]).

The level set of an M-convex function is not necessarily an M-convex set, but enjoys a weaker exchange property. Namely, for any $p \in \mathbf{R}^V$ and $\alpha \in \mathbf{R}, S = \{x \in \mathbf{Z}^V \mid f[-p](x) \leq \alpha\}$ (the level set of f[-p]) satisfies: For $x, y \in S$ and for $u \in \operatorname{supp}^+(x-y)$, there exists $v \in \operatorname{supp}^-(x-y)$ such that either $x - \chi_u + \chi_v \in S$ or $y + \chi_u - \chi_v \in$ S. Conversely, this property characterizes M-convex functions [26].

A number of operations can be defined for Mconvex functions [18, 17]. For $p \in \mathbf{Z}^V$, f[-p] is an M-convex function. For $a \in \mathbf{Z}^V$, f(a-x) and f(a + x) are M-convex in x. For $U \subseteq V$, the restriction of f to U:

$$f_U(x') = f(x', \mathbf{0}_{V \setminus U}) \quad (x' \in \mathbf{Z}^U)$$

(where $\mathbf{0}_{V\setminus U}$ is the zero vector in $\mathbf{Z}^{V\setminus U}$) is Mconvex in x', provided that dom $f_U \neq \emptyset$. For $\varphi_v \in \mathcal{C}_1 \ (v \in V)$,

$$\tilde{f}(x) = f(x) + \sum_{v \in V} \varphi_v(x(v)) \quad (x \in \mathbf{Z}^V)$$

is M-convex, provided that dom $\tilde{f} \neq \emptyset$. In particular, a separable convex function $\tilde{f}(x) = \sum_{v \in V} \varphi_v(x(v))$ with dom \tilde{f} being an M-convex set is an M-convex function. For two M-convex functions f_1 and f_2 , the integral convolution

$$(f_1 \Box f_2)(x) = \inf\{f_1(x_1) + f_2(x_2) \mid x = x_1 + x_2; x_1, x_2 \in \mathbf{Z}^V\} \quad (x \in \mathbf{Z}^V)$$

is either M-convex or else $(f_1 \Box f_2)(x) = \pm \infty$ for all $x \in \mathbf{Z}^V$.

Sum of two M-convex functions is not necessarily M-convex; such function with nonempty effective domain is called M_2 -convex. Convolution of two L-convex functions is not necessarily L-convex; such function with nonempty effective domain is called L_2 -convex. M₂- and L₂convex functions are in one-to-one correspondence through the integral Fenchel-Legendre transformation.

 L^{\natural} - and M^{\natural} -convexity. L^{\natural} - and M^{\natural} -convexity are variants of, and essentially equivalent to, L- and M-convexity, respectively. L^{\natural} - and M^{\natural} convex functions are introduced in [9] and [21], respectively.

Let v_0 be a new element not in V and define $\tilde{V} = \{v_0\} \cup V$. A function $g : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ with dom $g \neq \emptyset$ is called L^{\natural} -convex if it is expressed in terms of an L-convex function \tilde{g} : $\mathbf{Z}^{\tilde{V}} \to \mathbf{Z} \cup \{+\infty\}$ as $g(p) = \tilde{g}(0, p)$. Namely,

```
M_2-convex \rightarrow M_2-convex function
```

an L^{\natural}-convex function is a function obtained as the restriction of an L-convex function. Conversely, an L^{\natural}-convex function determines the corresponding L-convex function up to the constant r in the definition of L-convex function.

An L^{\natural} -convex function is essentially the same as a submodular integrally convex function of [5], and hence is characterized by discrete midpoint convexity [9]. An L-convex function, enjoying discrete midpoint convexity, is an L^{\natural} -convex function.

Quadratic function

$$g(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} p_i p_j \quad (p \in \mathbf{Z}^n)$$

with $a_{ij} = a_{ji} \in \mathbf{Z}$ is L^{\$\$-convex if and only if $a_{ij} \leq 0 \ (i \neq j)$ and $\sum_{j=1}^{n} a_{ij} \geq 0 \ (i = 1, \dots, n)$. For $\{\psi_i \in \mathcal{C}_1 \mid i = 1, \dots, n\}$, a separable convex function}

$$g(p) = \sum_{i=1}^{n} \psi_i(p_i) \quad (p \in \mathbf{Z}^n)$$

is L^{\natural} -convex.

The properties of L-convex functions mentioned above are carried over, mutatis mutandis, to L^{\natural}-convex functions. In addition, the restriction of an L^{\natural}-convex function g to $U \subseteq V$, denoted g_U , is L^{\natural}-convex.

A subset of \mathbf{Z}^V is called an L^{\natural} -convex set if its indicator function is an L^{\natural} -convex function. A set $E \subseteq \mathbf{Z}^V$ is an L^{\natural} -convex set if and only if

$$p,q \in E \implies \left\lceil \frac{p+q}{2} \right\rceil, \left\lfloor \frac{p+q}{2} \right\rfloor \in E.$$

A function $f : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ with dom $f \neq \emptyset$ is called M^{\natural} -convex if it is expressed in terms of an M-convex function $\tilde{f} : \mathbf{Z}^{\tilde{V}} \to \mathbf{Z} \cup \{+\infty\}$ as

$$\tilde{f}(x_0, x) = \begin{cases} f(x) & \text{if } x_0 + \sum_{u \in V} x(u) = 0 \\ +\infty & \text{otherwise.} \end{cases}$$

Namely, an M^{\natural} -convex function is a function obtained as the projection of an M-convex function. Conversely, an M^{\natural} -convex function determines the corresponding M-convex function up

 L_2 -convex $\rightarrow L_2$ -convex function

 L^{\natural} -convex $\rightarrow L^{\natural}$ -convex function

 L^{\natural} -convex set

 $[\]mathit{M}^{\natural} \text{-} \mathit{convex} \rightarrow \mathit{M}^{\natural} \text{-} \mathit{convex} \ \mathit{function}$

to a translation of dom f in the direction of v_0 . A function $f : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ with dom $f \neq \emptyset$ is M^{\natural} -convex if and only if (see [21]) it satisfies

(M^{\natural}-EXC) For $x, y \in \text{dom } f$ and $u \in \text{supp}^+(x - y)$,

$$f(x) + f(y)$$

$$\geq \min[f(x - \chi_u) + f(y + \chi_u),$$

$$\min_{v \in \text{supp}^-(x-y)} \{f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v)\}].$$

Since (M-EXC) implies (M^{\natural} -EXC), an M-convex function is an M^{\natural} -convex function.

Quadratic function

$$f(x) = \sum_{i=1}^{n} a_i x_i^2 + b \sum_{i < j} x_i x_j \qquad (x \in \mathbf{Z}^n)$$

with $a_i \in \mathbf{Z}$ $(1 \leq i \leq n), b \in \mathbf{Z}$ is M^{\natural} convex if $0 \leq b \leq 2 \min_{1 \leq i \leq n} a_i$ (cf. [21]). For $\{\varphi_i \in \mathcal{C}_1 \mid i = 0, 1, \cdots, n\}$, a function of the form

$$f(x) = \varphi_0(\sum_{i=1}^n x_i) + \sum_{i=1}^n \varphi_i(x_i) \quad (x \in \mathbf{Z}^n)$$

is M^{\natural}-convex [21]; a separable convex function is a special case of this (with $\varphi_0 = 0$). More generally, for { $\varphi_X \in C_1 \mid X \in \mathcal{T}$ } indexed by a laminar family $\mathcal{T} \subseteq 2^V$, the function

$$f(x) = \sum_{X \in \mathcal{T}} \varphi_X(x(X)) \quad (x \in \mathbf{Z}^V)$$

is M^{\natural} -convex [1], where \mathcal{T} is called laminar if for any $X, Y \in \mathcal{T}$, at least one of $X \cap Y$, $X \setminus Y$, $Y \setminus X$ is empty.

The properties of M-convex functions mentioned above are carried over, mutatis mutandis, to M^{\natural} -convex functions. In addition, the projection of an M^{\natural} -convex function f to $U \subseteq V$, denoted f^{U} , is M^{\natural} -convex.

A subset of \mathbf{Z}^V is called an M^{\natural} -convex set if its indicator function is an M^{\natural} -convex function. A set $Q \subseteq \mathbf{Z}^V$ is an M^{\natural} -convex set if and only if Q is the set of integer points of an integral generalized polymatroid (cf. [7] for generalized polymatroids).

As a consequence of the conjugacy between Land M-convexity, L^{\natural} -convex functions and M^{\natural} convex functions are conjugate to each other under the integral Fenchel-Legendre transformation.

Duality. Discrete duality theorems hold true for L-convex/concave and M-convex/concave functions. A function $g : \mathbb{Z}^V \to \mathbb{Z} \cup \{-\infty\}$ is called L-concave (resp., L^{\\\\\\\\\\\\\\\}-, M-, or M^{\\\\\\\\}-concave)) if -g is L-convex (resp., L^{\\\\\}-, M-, or M^{\\\\\\\\}-convex); dom g means the effective domain of -g. The concave counterpart of the discrete Fenchel-Legendre transform is defined as}

$$g^{\circ}(p) = \inf\{\langle p, x \rangle - g(x) \mid x \in \mathbf{Z}^V\} \quad (p \in \mathbf{Z}^V).$$

A discrete separation theorem for Lconvex/concave functions, named *L*-separation theorem [18] (see also [10]), reads as follows. Let $f : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ be an L^{\(\epsilon\)}-convex function and $g : \mathbf{Z}^V \to \mathbf{Z} \cup \{-\infty\}$ be an L^{\(\epsilon\)}concave function such that dom $f \cap \text{dom } g \neq \emptyset$ or dom $f^{\bullet} \cap \text{dom } g^{\circ} \neq \emptyset$. If $f(p) \ge g(p)$ $(p \in \mathbf{Z}^V)$, there exist $\beta^* \in \mathbf{Z}$ and $x^* \in \mathbf{Z}^V$ such that

$$f(p) \ge \beta^* + \langle p, x^* \rangle \ge g(p) \quad (p \in \mathbf{Z}^V).$$

Since a submodular set function can be identified with a positively homogeneous Lconvex function, the L-separation theorem implies Frank's discrete separation theorem for a pair of sub/supermodular functions [6], which reads as follows. Let $\rho : 2^V \to \mathbf{Z} \cup \{+\infty\}$ and $\mu : 2^V \to \mathbf{Z} \cup \{-\infty\}$ be submodular and supermodular functions, respectively, with $\rho(\emptyset) =$ $\mu(\emptyset) = 0, \ \rho(V) < +\infty, \ \mu(V) > -\infty$, where μ is called supermodular if $-\mu$ is submodular. If $\rho(X) \ge \mu(X) \ (X \subseteq V)$, there exists $x^* \in \mathbf{Z}^V$ such that

$$\rho(X) \ge x^*(X) \ge \mu(X) \quad (X \subseteq V).$$

Another discrete separation theorem, *M*separation theorem [14, 18] (see also [10]), holds true for M-convex/concave functions. Namely, let $f : \mathbf{Z}^V \to \mathbf{Z} \cup \{+\infty\}$ be an M^{\natural}-convex

 M^{\natural} -convex set

L-separation theorem

M-separation theorem

function and $g : \mathbf{Z}^V \to \mathbf{Z} \cup \{-\infty\}$ be an M^{\natural} concave function such that dom $f \cap \mathrm{dom} \, g \neq \emptyset$ or dom $f^{\bullet} \cap \mathrm{dom} \, g^{\circ} \neq \emptyset$. If $f(x) \ge g(x) \ (x \in \mathbf{Z}^V)$, there exist $\alpha^* \in \mathbf{Z}$ and $p^* \in \mathbf{Z}^V$ such that

$$f(x) \ge \alpha^* + \langle p^*, x \rangle \ge g(x) \quad (x \in \mathbf{Z}^V).$$

The L- and M-separation theorems are conjugate to each other, while a self-conjugate statement can be made in the form of the *Fenchel*type duality [14, 18], as follows. Let $f : \mathbb{Z}^V \to \mathbb{Z} \cup \{+\infty\}$ be an L^{\\[\beta-convex function and $g : \mathbb{Z}^V \to \mathbb{Z} \cup \{+\infty\}$ be an L^{\\[\beta-convex function and $g : \mathbb{Z}^V \to \mathbb{Z} \cup \{-\infty\}$ be an L^{\\[\beta-convex function such that dom $f \cap \text{dom } g \neq \emptyset$ or dom $f^{\bullet} \cap \text{dom } g^{\circ} \neq \emptyset$. Then it holds that}}}

$$\inf\{f(p) - g(p) \mid p \in \mathbf{Z}^V\} \\ = \sup\{g^{\circ}(x) - f^{\bullet}(x) \mid x \in \mathbf{Z}^V\}.$$

Moreover, if this common value is finite, the infimum is attained by some $p \in \text{dom } f \cap \text{dom } g$ and the supremum is attained by some $x \in$ $\text{dom } f^{\bullet} \cap \text{dom } g^{\circ}$.

Here is a simple example to illustrate the subtlety of discrete separation for discrete functions. Functions $f : \mathbf{Z}^2 \to \mathbf{Z}$ and $g : \mathbf{Z}^2 \to \mathbf{Z}$ defined by $f(x_1, x_2) = \max(0, x_1 + x_2)$ and $g(x_1, x_2) = \min(x_1, x_2)$ can be extended respectively to a convex function $\overline{f} : \mathbf{R}^2 \to \mathbf{R}$ and a concave function $\overline{g} : \mathbf{R}^2 \to \mathbf{R}$ according to the defining expressions. With $\overline{p} = (\frac{1}{2}, \frac{1}{2})$, we have $\overline{f}(x) \geq \langle \overline{p}, x \rangle \geq \overline{g}(x)$ for all $x \in \mathbf{R}^2$, and a fortiori, $f(x) \geq \langle \overline{p}, x \rangle \geq g(x)$ for all $x \in \mathbf{Z}^2$. However, there exists no integral vector $p \in \mathbf{Z}^2$ such that $f(x) \geq \langle p, x \rangle \geq g(x)$ for all $x \in \mathbf{Z}^2$. Note also that f is M^{\beta}-convex and g is L-concave.

Network duality. A conjugate pair of M- and L-convex functions can be transformed through a network ([14, 17]; see also [25]). Let G = (V, A)be a directed graph with arc set A and vertex set V partitioned into three disjoint parts as $V = V^+ \cup V^0 \cup V^-$. For $\varphi_a \in C_1$ $(a \in A)$ and M-convex $f : \mathbf{Z}^{V^+} \to \mathbf{Z} \cup \{+\infty\}$, define $\tilde{f}: \mathbf{Z}^{V^-} \to \mathbf{Z} \cup \{\pm\infty\}$ by

$$\tilde{f}(y) = \inf_{\xi, x} \{ f(x) + \sum_{a \in A} \varphi_a(\xi(a)) \mid \\ \partial \xi = (x, 0, -y) \in \mathbf{Z}^{V^+ \cup V^0 \cup V^-}, \xi \in \mathbf{Z}^A \}.$$

For $\psi_a \in \mathcal{C}_1$ $(a \in A)$ and L-convex $g : \mathbf{Z}^{V^+} \to \mathbf{Z} \cup \{+\infty\}$, define $\tilde{g} : \mathbf{Z}^{V^-} \to \mathbf{Z} \cup \{\pm\infty\}$ by

$$\tilde{g}(q) = \inf_{\eta, p, r} \{ g(p) + \sum_{a \in A} \psi_a(\eta(a)) \mid \eta = -\delta(p, r, q),$$
$$\eta \in \mathbf{Z}^A, (p, r, q) \in \mathbf{Z}^{V^+ \cup V^0 \cup V^-} \}.$$

Then \tilde{f} is M-convex, provided that $\tilde{f} > -\infty$, and \tilde{g} is L-convex, provided that $\tilde{g} > -\infty$. If $g = f^{\bullet}$ and $\psi_a = \varphi_a^{\bullet}$ $(a \in A)$, then $\tilde{g} = \tilde{f}^{\bullet}$. A special case $(V^+ = V)$ of the last statement yields the network duality: $\inf\{\Phi(x,\xi) \mid \\ \partial \xi = x, x \in \mathbf{Z}^V, \xi \in \mathbf{Z}^A\} = \sup\{\Psi(p,\eta) \mid \\ \eta = -\delta p, p \in \mathbf{Z}^V, \eta \in \mathbf{Z}^A\}$, where $\Phi(x,\xi) = f(x) + \sum_{a \in A} \varphi_a(\xi(a)), \quad \Psi(p,\eta) = -g(p) - \\ \sum_{a \in A} \psi_a(\eta(a))$ and the finiteness of $\inf \Phi$ or $\sup \Psi$ is assumed. The network duality is equivalent to the Fenchel-type duality.

Subdifferentials. The subdifferential of f: $\mathbf{Z}^{V} \to \mathbf{Z} \cup \{+\infty\}$ at $x \in \text{dom } f$ is defined by $\{p \in \mathbf{R}^{V} \mid f(y) - f(x) \ge \langle p, y - x \rangle \; (\forall y \in \mathbf{Z}^{V}) \}$. The subdifferential of an L₂- or M₂-convex function forms an integral polyhedron. More specifically:

- The subdifferential of an L-convex function is an integral base polyhedron (an Mconvex polyhedron).
- The subdifferential of an L₂-convex function is the intersection of two integral base polyhedra (M-convex polyhedra).
- The subdifferential of an M-convex function is an L-convex polyhedron.
- The subdifferential of an M₂-convex function is the Minkowski sum of two L-convex polyhedra.

Similar statements hold true with L and M replaced respectively by L^{\natural} and M^{\natural} .

Algorithms. On the basis of the equivalence of L^{\natural} -convex functions and submodular integrally convex functions, the minimization of an L-convex function can be done by the algorithm of [5], which relies on the ellipsoid method. The minimization of an M-convex function can be done by purely combinatorial algorithms;

Fenchel-type duality \rightarrow Fenchel-type duality for M- and L-convex functions

a greedy-type algorithm [2] for valuated matroids and a domain reduction-type polynomialtime algorithm [27] for M-convex functions. Algorithms for duality of M-convex functions (in other words, for M₂-convex functions) are also developed; polynomial algorithms [16, 24] for valuated matroids, and a finite primal algorithm [13] and a polynomial-time conjugate-scaling algorithm [11] for the submodular flow problem.

Applications. A discrete analogue of the conjugate duality framework [23] for nonlinear optimization is developed in [18]. An application of M-convex functions to engineering system analysis and matrix theory is in [15, 19]. M-convex functions find applications also in mathematical economics [1].

References

- DANILOV, V., KOSHEVOY, G., AND MUROTA, K.: Equilibria in economies with indivisible goods and money, RIMS Preprint 1204, Kyoto University, May 1998.
- [2] DRESS, A.W.M., AND WENZEL, W.: 'Valuated matroid: A new look at the greedy algorithm', *Applied Mathematics Letters* 3, no. 2 (1990), 33–35.
- [3] DRESS, A.W.M., AND WENZEL, W.: 'Valuated matroids', Advances in Mathematics 93 (1992), 214– 250.
- [4] EDMONDS, J.: 'Submodular functions, matroids and certain polyhedra', *Combinatorial Structures* and *Their Applications*, in N. SAUER R. GUY, H. HANANI AND J. SCHÖNHEIM (eds.). Gordon and Breach, New York, 1970, pp. 69–87.
- [5] FAVATI, P., AND TARDELLA, F.: 'Convexity in nonlinear integer programming', *Ricerca Operativa* 53 (1990), 3–44.
- [6] FRANK, A.: 'An algorithm for submodular functions on graphs', Annals of Discrete Mathematics 16 (1982), 97–120.
- [7] FRANK, A., AND TARDOS, É.: 'Generalized polymatroids and submodular flows', *Mathematical Pro*gramming 42 (1988), 489–563.
- [8] FUJISHIGE, S.: Submodular Functions and Optimization, Vol. 47, North-Holland, Amsterdam, 1991.
- [9] FUJISHIGE, S., AND MUROTA, K.: On the relationship between L-convex functions and submodular integrally convex functions, RIMS Preprint 1152, Kyoto University, August 1997.
- [10] FUJISHIGE, S., AND MUROTA, K.: Short proofs of the separation theorems for L-convex/concave and M-convex/concave functions, RIMS Preprint 1167, Kyoto University, October 1997.

- [11] IWATA, S., AND SHIGENO, M.: 'Conjugate scaling technique for Fenchel-type duality in discrete optimization', *IPSJ SIG Notes* **98-AL-65** (1998).
- [12] LOVÁSZ, L.: 'Submodular functions and convexity', Mathematical Programming – The State of the Art, in M. GRÖTSCHEL A. BACHEM AND B. KORTE (eds.). Springer-Verlag, Berlin, 1983, pp. 235–257.
- [13] MUROTA, K.: Submodular flow problem with a nonseparable cost function, Tech. Rep. 95843-OR, Forschungsinstitut für Diskrete Mathematik, Universität Bonn, March 1995, Revised version: RIMS Preprint 1061, Kyoto University (January 1996).
- [14] MUROTA, K.: 'Convexity and Steinitz's exchange property', Advances in Mathematics 124 (1996), 272–311.
- [15] MUROTA, K.: 'Structural approach in systems analysis by mixed matrices – An exposition for index of DAE', *ICIAM 95*, in O. MAHRENHOLTZ K. KIRCHGÄSSNER AND R. MENNICKEN (eds.), Vol. 87 of *Mathematical Research*. Akademie Verlag, 1996, pp. 257–279.
- [16] MUROTA, K.: 'Valuated matroid intersection, I: optimality criteria, II: algorithms', SIAM Journal on Discrete Mathematics 9 (1996), 545–561, 562–576.
- [17] MUROTA, K.: 'Discrete convex analysis', Discrete Structures and Algorithms, in S. FUJISHIGE (ed.), Vol. V. Kindai-Kagaku-sha, Tokyo, 1998, pp. 51– 100, in Japanese.
- [18] MUROTA, K.: 'Discrete convex analysis', *Mathematical Programming* (to appear).
- [19] MUROTA, K.: 'On the degree of mixed polynomial matrices', SIAM Journal on Matrix Analysis and Applications (to appear).
- [20] MUROTA, K., AND SHIOURA, A.: Polyhedral Mconvex and L-convex functions — Two classes of combinatorial convexity over real space, presented at NACA98 (Niigata, July 1998).
- [21] MUROTA, K., AND SHIOURA, A.: 'M-convex function on generalized polymatroid', *Mathematics of Operations Research* (to appear).
- [22] ROCKAFELLAR, R. T.: Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
- [23] ROCKAFELLAR, R. T.: Conjugate Duality and Optimization, SIAM Regional Conference in Applied Mathematics. SIAM, Philadelphia, 1974.
- [24] SHIGENO, M.: A Dual Approximation Approach to Matroid Optimization Problems, PhD thesis, Tokyo Institute of Technology, 1996.
- [25] SHIOURA, A.: 'A constructive proof for the induction of M-convex functions through networks', *Discrete Applied Mathematics* 82 (1998), 271–278.
- [26] SHIOURA, A.: Level set characterization of M-convex functions, Research Report 21, Department of Mechanical Engineering, Sophia University, February 1998.

[27] SHIOURA, A.: 'Minimization of an M-convex function', Discrete Applied Mathematics 84 (1998), 215– 220.

> Kazuo Murota Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502 Japan

E-mail address: murota@kurims.kyoto-u.ac.jp *AMS1991SubjectClassification*: 90C27,90C25, 90C10,90C35.

Key words and phrases: L-convexity, M-convexity, discrete convex analysis, submodular function, matroid.