L-CONVEX FUNCTIONS CONVEX FUNCTIONS

In the field of nonlinear programming (in continuous variables) convex analysis $[22,23]$ plays a pivotal role both in theory and in practice. An analogous theory for discrete optimization (nonlinear integer programming), called "discrete convex analysis" $[18,17]$, is developed for L-convex and M-convex functions by adapting the ideas in convex analysis and generalizing the results in matroid theory. The Land M-convex functions are introduced in [18] and $[13,14]$, respectively.
Definitions of L- and M-convexity. Let V be a nonempty finite set and \mathbf{Z} be the set of integers. For any function $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ define $\operatorname{dom} g=\left\{p \in \mathbf{Z}^{V} \mid g(p)<+\infty\right\}$, called the effective domain of g.

A function $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ with $\operatorname{dom} g \neq$ \emptyset is called L-convex if

$$
\begin{gathered}
g(p)+g(q) \geq g(p \vee q)+g(p \wedge q) \quad\left(p, q \in \mathbf{Z}^{V}\right) \\
\exists r \in \mathbf{Z}: g(p+\mathbf{1})=g(p)+r \quad\left(p \in \mathbf{Z}^{V}\right)
\end{gathered}
$$

where $p \vee q=(\max (p(v), q(v)) \mid v \in V) \in \mathbf{Z}^{V}$, $p \wedge q=(\min (p(v), q(v)) \mid v \in V) \in \mathbf{Z}^{V}$, and $\mathbf{1}$ is the vector in \mathbf{Z}^{V} with all components being equal to 1 .

A set $D \subseteq \mathbf{Z}^{V}$ is said to be an L-convex set if its indicator function δ_{D} (defined by: $\delta_{D}(p)=0$ if $p \in D$, and $=+\infty$ otherwise) is an L-convex function, i.e., if (i) $D \neq \emptyset$, (ii) $p, q \in D \Rightarrow$ $p \vee q, p \wedge q \in D$, and (iii) $p \in D \Rightarrow p \pm \mathbf{1} \in D$.

A function $f: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ with $\operatorname{dom} f \neq$ \emptyset is called M-convex if it satisfies
(M-EXC) For $x, y \in \operatorname{dom} f$ and $u \in \operatorname{supp}^{+}(x-$ $y)$, there exists $v \in \operatorname{supp}^{-}(x-y)$ such that
$f(x)+f(y) \geq f\left(x-\chi_{u}+\chi_{v}\right)+f\left(y+\chi_{u}-\chi_{v}\right)$
where, for any $u \in V, \chi_{u}$ is the characteristic vector of u (defined by: $\chi_{u}(v)=1$ if $v=u$, and
L-convex \rightarrow-convex function
L-convex set
M-convex \rightarrow-convex function
M-convex set
integral Fenchel-Legendre transformation
$=0$ otherwise), and

$$
\begin{aligned}
& \operatorname{supp}^{+}(z)=\{v \in V \mid z(v)>0\} \quad\left(z \in \mathbf{Z}^{V}\right) \\
& \operatorname{supp}^{-}(z)=\{v \in V \mid z(v)<0\} \quad\left(z \in \mathbf{Z}^{V}\right)
\end{aligned}
$$

A set $B \subseteq \mathbf{Z}^{V}$ is said to be an M-convex set if its indicator function is an M-convex function, i.e., if B satisfies
(B-EXC) For $x, y \in B$ and for $u \in \operatorname{supp}^{+}(x-y)$, there exists $v \in \operatorname{supp}^{-}(x-y)$ such that $x-\chi_{u}+$ $\chi_{v} \in B$ and $y+\chi_{u}-\chi_{v} \in B$.

This means that an M-convex set is the same as the set of integer points of the base polyhedron of an integral submodular system (see [8] for submodular systems).

L-convexity and M-convexity are conjugate to each other under the integral Fenchel-Legendre transformation $f \mapsto f^{\bullet}$ defined by
$f^{\bullet}(p)=\sup \left\{\langle p, x\rangle-f(x) \mid x \in \mathbf{Z}^{V}\right\} \quad\left(p \in \mathbf{Z}^{V}\right)$,
where $\langle p, x\rangle=\sum_{v \in V} p(v) x(v)$. That is, for Lconvex function g and M-convex function f, it holds [18] that g^{\bullet} is M-convex, f^{\bullet} is L-convex, $g^{\bullet \bullet}=g$, and $f^{\bullet \bullet}=f$.
Example 1: Minimum cost flow problem. L-convexity and M-convexity are inherent in the integer minimum-cost flow problem, as pointed out in $[14,18]$. Let $G=(V, A)$ be a graph with vertex set V and arc set A, and let $T \subseteq V$ be given. For $\xi: A \rightarrow \mathbf{Z}$ its boundary $\partial \xi: V \rightarrow \mathbf{Z}$ is defined by

$$
\begin{aligned}
\partial \xi(v)= & \sum\left\{\xi(a) \mid a \in \delta^{+} v\right\} \\
& -\sum\left\{\xi(a) \mid a \in \delta^{-} v\right\} \quad(v \in V)
\end{aligned}
$$

where $\delta^{+} v$ and $\delta^{-} v$ denote the sets of out-going and in-coming arcs incident to v, respectively. For $\tilde{p}: V \rightarrow \mathbf{Z}$ its coboundary $\delta \tilde{p}: A \rightarrow \mathbf{Z}$ is defined by

$$
\delta \tilde{p}(a)=\tilde{p}\left(\partial^{+} a\right)-\tilde{p}\left(\partial^{-} a\right) \quad(a \in A)
$$

where $\partial^{+} a$ and $\partial^{-} a$ mean the initial and terminal vertices of a, respectively. Denote the class
of one-dimensional discrete convex functions by

$$
\begin{aligned}
\mathcal{C}_{1}= & \{\varphi: \mathbf{Z} \rightarrow \mathbf{Z} \cup\{+\infty\} \mid \operatorname{dom} \varphi \neq \emptyset \\
& \varphi(t-1)+\varphi(t+1) \geq 2 \varphi(t)(t \in \mathbf{Z})\}
\end{aligned}
$$

For $\varphi_{a} \in \mathcal{C}_{1}(a \in A)$, representing the arccost in terms of flow, the total cost function $f: \mathbf{Z}^{T} \rightarrow \mathbf{Z} \cup\{+\infty\}$ defined by

$$
\begin{aligned}
f(x)= & \inf _{\xi}\left\{\sum_{a \in A} \varphi_{a}(\xi(a)) \mid\right. \\
& \partial \xi(v)=-x(v)(v \in T), \\
& \partial \xi(v)=0(v \in V \backslash T)\} \quad\left(x \in \mathbf{Z}^{T}\right)
\end{aligned}
$$

is M-convex, provided that $f>-\infty$ (i.e., f does not take the value of $-\infty)$. For $\psi_{a} \in \mathcal{C}_{1}(a \in A)$, representing the arc-cost in terms of tension, the total cost function $g: \mathbf{Z}^{T} \rightarrow \mathbf{Z} \cup\{+\infty\}$ defined by

$$
\begin{aligned}
& g(p)=\inf _{\tilde{p}}\left\{\sum_{a \in A} \psi_{a}(\eta(a)) \mid \eta=-\delta \tilde{p},\right. \\
& \quad \tilde{p}(v)=p(v)(v \in T)\} \quad\left(p \in \mathbf{Z}^{T}\right)
\end{aligned}
$$

is L-convex, provided that $g>-\infty$. The two cost functions $f(x)$ and $g(p)$ are conjugate to each other in the sense that, if $\psi_{a}=\varphi_{a}^{\bullet}(a \in A)$, then $g=f^{\bullet}$.
Example 2: Polynomial matrix. Let $A(s)$ be an $m \times n$ matrix of rank m with each entry being a polynomial in a variable s, and let $\mathcal{B} \subseteq 2^{V}$ be the family of bases of $A(s)$ with respect to linear independence of the column vectors; namely, $J \subseteq V$ belongs to \mathcal{B} if and only if $|J|=m$ and the column vectors with indices in J are linearly independent. Then $f: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ defined by

$$
f(x)= \begin{cases}-\operatorname{deg}_{s} \operatorname{det} A[J] & \left(x=\chi_{J}, J \in \mathcal{B}\right) \\ +\infty & \text { (otherwise) }\end{cases}
$$

is M-convex, where $\chi_{J} \in\{0,1\}^{V}$ is the characteristic vector of J (defined by: $\chi_{J}(v)=1$ if $v \in J$, and $=0$ otherwise), $A[J]$ denotes the $m \times m$ submatrix with column indices in $J \in \mathcal{B}$, and $\operatorname{deg}_{s}(\cdot)$ means the degree as a polynomial in s. The Grassmann-Plücker identity implies the exchange property of f. This example was the motivation of valuated matroids in [2, 3], which in turn can be identified with the negative of M-convex functions f with dom $f \subseteq\{0,1\}^{V}$.

For $p=(p(v) \mid v \in V) \in \mathbf{Z}^{V}$ denote by $D(p)$ the diagonal matrix of order $n=|V|$ with diagonal elements $s^{p(v)}(v \in V)$. Then the function $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z}$ defined by

$$
g(p)=\max \left\{\operatorname{deg}_{s} \operatorname{det}(A \cdot D(p))[J] \mid J \in \mathcal{B}\right\}
$$

is L-convex [17], where $(A \cdot D(p))[J]$ means the $m \times m$ submatrix of $A \cdot D(p)$ with column indices in J. We have $g=f^{\bullet}$.
L-convex sets. An L-convex set $D \subseteq \mathbf{Z}^{V}$ has "no holes" in the sense that $D=\bar{D} \cap \mathbf{Z}^{V}$, where \bar{D} denotes the convex hull of D in \mathbf{R}^{V}. Hence it is natural to consider the polyhedral description of \bar{D}, "L-convex polyhedron" (see $[18,17]$). For any function $\gamma: V \times V \rightarrow \mathbf{Z} \cup\{+\infty\}$ with $\gamma(v, v)=0(v \in V)$, define

$$
\begin{aligned}
\mathbf{D}(\gamma)= & \left\{p \in \mathbf{R}^{V} \mid\right. \\
& p(v)-p(u) \leq \gamma(u, v)(\forall u, v \in V)\}
\end{aligned}
$$

If $\mathbf{D}(\gamma) \neq \emptyset, \mathbf{D}(\gamma)$ is an integral polyhedron and $D=\mathbf{D}(\gamma) \cap \mathbf{Z}^{V}$ is an L-convex set. If γ satisfies triangle inequality:

$$
\gamma(u, v)+\gamma(v, w) \geq \gamma(u, w) \quad(u, v, w \in V)
$$

then $\mathbf{D}(\gamma) \neq \emptyset$ and

$$
\begin{array}{r}
\gamma(u, v)=\sup \{p(v)-p(u) \mid p \in \mathbf{D}(\gamma)\} \\
(u, v \in V)
\end{array}
$$

Conversely, for any nonempty $D \subseteq \mathbf{Z}^{V}$,
$\gamma(u, v)=\sup \{p(v)-p(u) \mid p \in D\} \quad(u, v \in V)$
satisfies triangle inequality as well as $\gamma(v, v)=0$ $(v \in V)$, and if D is L-convex, then $\bar{D}=\mathbf{D}(\gamma)$. Thus there is a one-to-one correspondence between L-convex set D and function γ satisfying triangle inequality. In particular, $D \subseteq \mathbf{Z}^{V}$ is Lconvex if and only if $D=\mathbf{D}(\gamma) \cap \mathbf{Z}^{V}$ for some γ satisfying triangle inequality. For L-convex sets $D_{1}, D_{2} \subseteq \mathbf{Z}^{V}$, it holds that $D_{1}+D_{2}=$ $\overline{D_{1}+D_{2}} \cap \mathbf{Z}^{V}$ and $\overline{D_{1}} \cap \overline{D_{2}}=\overline{D_{1} \cap D_{2}}$.

It is also true that a function γ satisfying triangle inequality corresponds one-to-one to a positively homogeneous M-convex function f (i.e, $f(\lambda x)=\lambda f(x)$ for $x \in \mathbf{Z}^{V}$ and $0 \leq \lambda \in \mathbf{Z}$). The correspondence $f \mapsto \gamma$ is given by

$$
\gamma(u, v)=f\left(\chi_{v}-\chi_{u}\right) \quad(u, v \in V)
$$

whereas $\gamma \mapsto f$ by

$$
\begin{aligned}
f(x)=\inf _{\lambda}\left\{\sum_{u, v \in V} \lambda_{u v} \gamma(u, v) \mid\right. \\
\sum_{u, v \in V} \lambda_{u v}\left(\chi_{v}-\chi_{u}\right)=x \\
\left.0 \leq \lambda_{u v} \in \mathbf{Z}(u, v \in V)\right\} \\
\left(x \in \mathbf{Z}^{V}\right) .
\end{aligned}
$$

The correspondence between L-convex sets and positively homogeneous M -convex functions via functions with triangle inequality is a special case of the conjugacy relationship between Land M-convex functions.
M-convex sets. An M-convex set $B \subseteq \mathbf{Z}^{V}$ has "no holes" in the sense that $B=\bar{B} \cap \mathbf{Z}^{V}$. Hence it is natural to consider the polyhedral description of \bar{B}, "M-convex polyhedron." A set function $\rho: 2^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ is said to be submodular if

$$
\begin{array}{r}
\rho(X)+\rho(Y) \geq \rho(X \cup Y)+\rho(X \cap Y) \\
(X, Y \subseteq V)
\end{array}
$$

where the inequality is satisfied if $\rho(X)$ or $\rho(Y)$ is equal to $+\infty$. It is assumed throughout that $\rho(\emptyset)=0$ and $\rho(V)<+\infty$ for any set function $\rho: 2^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$. For a set function ρ, define

$$
\begin{aligned}
& \mathbf{B}(\rho)=\left\{x \in \mathbf{R}^{V}\right. \\
& \quad x(X) \leq \rho(X)(\forall X \subset V), x(V)=\rho(V)\}
\end{aligned}
$$

where $x(X)=\sum\{x(v) \mid v \in X\}$. If ρ is submodular, $\mathbf{B}(\rho)$ is a nonempty integral polyhedron, $B=\mathbf{B}(\rho) \cap \mathbf{Z}^{V}$ is an M-convex set, and

$$
\rho(X)=\sup \{x(X) \mid x \in \mathbf{B}(\rho)\} \quad(X \subseteq V)
$$

Conversely, for any nonempty $B \subseteq \mathbf{Z}^{V}$, define a set function ρ by

$$
\rho(X)=\sup \{x(X) \mid x \in B\} \quad(X \subseteq V)
$$

If B is M-convex, then ρ is submodular and $\bar{B}=\mathbf{B}(\rho)$. Thus there is a one-to-one correspondence between M -convex set B and submodular set function ρ. In particular, $B \subseteq \mathbf{Z}^{V}$ is M-convex if and only if $B=\mathbf{B}(\rho) \cap \mathbf{Z}^{V}$ for some submodular ρ. The correspondence $B \leftrightarrow \rho$ is a restatement of a well-known fact $[4,8]$.

For M-convex sets $B_{1}, B_{2} \subseteq \mathbf{Z}^{V}$, it holds that $B_{1}+B_{2}=\overline{B_{1}+B_{2}} \cap \mathbf{Z}^{V}$ and $\overline{B_{1}} \cap \overline{B_{2}}=\overline{B_{1} \cap B_{2}}$.

It is also true that a submodular set function ρ corresponds one-to-one to a positively homogeneous L-convex function g. The correspondence $g \mapsto \rho$ is given by the restriction

$$
\rho(X)=g\left(\chi_{X}\right) \quad(X \subseteq V)
$$

(χ_{X} is the characteristic vector of X), whereas $\rho \mapsto g$ by the Lovász extension (explained below). The correspondence between M-convex sets and positively homogeneous L-convex functions via submodular set functions is a special case of the conjugacy relationship between Mand L-convex functions.

For a set function $\rho: 2^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$, the Lovász extension [12] of ρ is a function $\hat{\rho}: \mathbf{R}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ defined by

$$
\hat{\rho}(p)=\sum_{j=1}^{n}\left(p_{j}-p_{j+1}\right) \rho\left(V_{j}\right) \quad\left(p \in \mathbf{R}^{V}\right)
$$

where, for each $p \in \mathbf{R}^{V}$, the elements of V are indexed as $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ (with $n=|V|$) in such a way that $p\left(v_{1}\right) \geq p\left(v_{2}\right) \geq \cdots \geq$ $p\left(v_{n}\right) ; p_{j}=p\left(v_{j}\right), V_{j}=\left\{v_{1}, v_{2}, \cdots, v_{j}\right\}$ for $j=1, \cdots, n$, and $p_{n+1}=0$. The right-hand side of the above expression is equal to $+\infty$ if and only if $p_{j}-p_{j+1}>0$ and $\rho\left(V_{j}\right)=+\infty$ for some j with $1 \leq j \leq n-1$. The Lovász extension $\hat{\rho}$ is indeed an extension of ρ, since $\hat{\rho}\left(\chi_{X}\right)=\rho(X)$ for $X \subseteq V$.

The relationship between submodularity and convexity is revealed by the statement [12] that a set function ρ is submodular if and only if its Lovász extension $\hat{\rho}$ is convex.

The restriction to \mathbf{Z}^{V} of the Lovász extension of a submodular set function is a positively homogeneous L-convex function, and any positively homogeneous L-convex function can be obtained in this way [18].
Properties of L-convex functions. For any $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ and $x \in \mathbf{R}^{V}$, define $g[-x]: \mathbf{Z}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ by

$$
g[-x](p)=g(p)-\langle p, x\rangle \quad\left(p \in \mathbf{Z}^{V}\right)
$$

The set of the minimizers of $g[-x]$ is denoted as $\operatorname{argmin}(g[-x])$.

Let $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ be L-convex. Then $\operatorname{dom} g$ is an L-convex set. For each $p \in \operatorname{dom} g$,

$$
\rho_{p}(X)=g\left(p+\chi_{X}\right)-g(p) \quad(X \subseteq V)
$$

is a submodular set function with $\rho_{p}(\emptyset)=0$ and $\rho_{p}(V)<+\infty$.

An L-convex function g can be extended to a convex function $\bar{g}: \mathbf{R}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$ through the Lovász extension of the submodular set functions ρ_{p} for $p \in \operatorname{dom} g$. Namely, for $p \in \operatorname{dom} g$ and $q \in[0,1]^{V}$, it holds [18] that

$$
\begin{aligned}
& \bar{g}(p+q)=g(p) \\
& \quad+\sum_{j=1}^{n}\left(q_{j}-q_{j+1}\right)\left(g\left(p+\chi_{V_{j}}\right)-g(p)\right)
\end{aligned}
$$

where, for each q, the elements of V are indexed as $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ (with $n=|V|$) in such a way that $q\left(v_{1}\right) \geq q\left(v_{2}\right) \geq \cdots \geq q\left(v_{n}\right) ; q_{j}=q\left(v_{j}\right)$, $V_{j}=\left\{v_{1}, v_{2}, \cdots, v_{j}\right\}$ for $j=1, \cdots, n$, and $q_{n+1}=0$. The expression of \bar{g} shows that an L-convex function is an integrally convex function in the sense of [5].

An L-convex function g enjoys discrete midpoint convexity:

$$
g(p)+g(q) \geq g\left(\left\lceil\frac{p+q}{2}\right\rceil\right)+g\left(\left\lfloor\frac{p+q}{2}\right\rfloor\right)
$$

for $p, q \in \mathbf{Z}^{V}$, where $\lceil p\rceil$ (or $\lfloor p\rfloor$) for any $p \in \mathbf{R}^{V}$ denotes the vector obtained by rounding up (or down) the components of p to the nearest integers.

The minimum of an L-convex function g is characterized by the local minimality in the sense that, for $p \in \operatorname{dom} g, g(p) \leq g(q)$ for all $q \in \mathbf{Z}^{V}$ if and only if $g(p+\mathbf{1})=g(p) \leq g\left(p+\chi_{X}\right)$ for all $X \subseteq V$.

The minimizers of an L-convex function, if nonempty, forms an L-convex set. For any $x \in$ \mathbf{R}^{V}, argmin $(g[-x])$, if nonempty, is an L-convex set. Conversely, this property characterizes Lconvex functions, under an auxiliary assumption that the function can be extented to a convex function over \mathbf{R}^{V} (cf. [20]).

A number of operations can be defined for Lconvex functions $[18,17]$. For $x \in \mathbf{Z}^{V}, g[-x]$ is
an L-convex function. For $a \in \mathbf{Z}^{V}$ and $\beta \in \mathbf{Z}$, $g(a+\beta p)$ is L-convex in p. For $U \subseteq V$, the projection of g to U :

$$
g^{U}\left(p^{\prime}\right)=\inf \left\{g\left(p^{\prime}, p^{\prime \prime}\right) \mid p^{\prime \prime} \in \mathbf{Z}^{V \backslash U}\right\} \quad\left(p^{\prime} \in \mathbf{Z}^{U}\right)
$$

is L-convex in p^{\prime}, provided that $g^{U}>-\infty$. For $\psi_{v} \in \mathcal{C}_{1}(v \in V)$,

$$
\tilde{g}(p)=\inf _{q \in \mathbf{Z}^{V}}\left[g(q)+\sum_{v \in V} \psi_{v}(p(v)-q(v))\right]
$$

is L-convex in $p \in \mathbf{Z}^{V}$, provided that $\tilde{g}>-\infty$. The sum of two (or more) L-convex functions is L-convex, provided that its effective domain is nonempty.
Properties of M-convex functions. Let f : $\mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ be M-convex. Then $\operatorname{dom} f$ is an M-convex set. For each $x \in \operatorname{dom} f$,

$$
\gamma_{x}(u, v)=f\left(x-\chi_{u}+\chi_{v}\right)-f(x) \quad(u, v \in V)
$$

satisfies [17] triangle inequality.
An M-convex function f can be extended to a convex function $\bar{f}: \mathbf{R}^{V} \rightarrow \mathbf{R} \cup\{+\infty\}$, and the value of $\bar{f}(x)$ for $x \in \mathbf{R}^{V}$ is determined by $\left\{f(y) \mid y \in \mathbf{Z}^{V},\lfloor x\rfloor \leq y \leq\lceil x\rceil\right\}$. That is, an Mconvex function is an integrally convex function in the sense of [5].

The minimum of an M-convex function f is characterized by the local minimality in the sense that for $x \in \operatorname{dom} f, f(x) \leq f(y)$ for all $y \in \mathbf{Z}^{V}$ if and only if $f(x) \leq f\left(x-\chi_{u}+\chi_{v}\right)$ for all $u, v \in V[13,14,18]$.

The minimizers of an M-convex function, if nonempty, forms an M-convex set. Moreover, for any $p \in \mathbf{R}^{V}$, $\operatorname{argmin}(f[-p])$, if nonempty, is an M-convex set. Conversely, this property characterizes M-convex functions, under an auxiliary assumption that the effective domain is bounded or the function can be extented to a convex function over \mathbf{R}^{V} (see [14, 18]).

The level set of an M-convex function is not necessarily an M-convex set, but enjoys a weaker exchange property. Namely, for any $p \in \mathbf{R}^{V}$ and $\alpha \in \mathbf{R}, S=\left\{x \in \mathbf{Z}^{V} \mid f[-p](x) \leq \alpha\right\}$ (the level set of $f[-p])$ satisfies: For $x, y \in S$ and for $u \in \operatorname{supp}^{+}(x-y)$, there exists $v \in \operatorname{supp}^{-}(x-y)$ such that either $x-\chi_{u}+\chi_{v} \in S$ or $y+\chi_{u}-\chi_{v} \in$
S. Conversely, this property characterizes Mconvex functions [26].

A number of operations can be defined for Mconvex functions $[18,17]$. For $p \in \mathbf{Z}^{V}, f[-p]$ is an M-convex function. For $a \in \mathbf{Z}^{V}, f(a-x)$ and $f(a+x)$ are M-convex in x. For $U \subseteq V$, the restriction of f to U :

$$
f_{U}\left(x^{\prime}\right)=f\left(x^{\prime}, \mathbf{0}_{V \backslash U}\right) \quad\left(x^{\prime} \in \mathbf{Z}^{U}\right)
$$

(where $\mathbf{0}_{V \backslash U}$ is the zero vector in $\mathbf{Z}^{V \backslash U}$) is Mconvex in x^{\prime}, provided that $\operatorname{dom} f_{U} \neq \emptyset$. For $\varphi_{v} \in \mathcal{C}_{1}(v \in V)$,

$$
\tilde{f}(x)=f(x)+\sum_{v \in V} \varphi_{v}(x(v)) \quad\left(x \in \mathbf{Z}^{V}\right)
$$

is M-convex, provided that $\operatorname{dom} \tilde{f} \neq \emptyset$. In particular, a separable convex function $\tilde{f}(x)=$ $\sum_{v \in V} \varphi_{v}(x(v))$ with $\operatorname{dom} \tilde{f}$ being an M-convex set is an M-convex function. For two M-convex functions f_{1} and f_{2}, the integral convolution

$$
\begin{aligned}
& \left(f_{1} \square f_{2}\right)(x)=\inf \left\{f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \mid\right. \\
& \left.\quad x=x_{1}+x_{2} ; x_{1}, x_{2} \in \mathbf{Z}^{V}\right\} \quad\left(x \in \mathbf{Z}^{V}\right)
\end{aligned}
$$

is either M-convex or else $\left(f_{1} \square f_{2}\right)(x)= \pm \infty$ for all $x \in \mathbf{Z}^{V}$.

Sum of two M-convex functions is not necessarily M-convex; such function with nonempty effective domain is called M_{2}-convex. Convolution of two L-convex functions is not necessarily L-convex; such function with nonempty effective domain is called L_{2}-convex. M_{2} - and $\mathrm{L}_{2}{ }^{-}$ convex functions are in one-to-one correspondence through the integral Fenchel-Legendre transformation.
L^{\natural} - and M^{\natural}-convexity. L^{\natural} - and M^{\natural}-convexity are variants of, and essentially equivalent to, L- and M-convexity, respectively. L^{h} - and M^{\natural} convex functions are introduced in [9] and [21], respectively.

Let v_{0} be a new element not in V and define $\tilde{V}=\left\{v_{0}\right\} \cup V$. A function $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ with $\operatorname{dom} g \neq \emptyset$ is called L^{\natural}-convex if it is expressed in terms of an L-convex function \tilde{g} : $\underline{\mathbf{Z}^{\tilde{V}} \rightarrow \mathbf{Z} \cup\{+\infty\} \text { as } g(p)=\tilde{g}(0, p) \text {. Namely, }, ~, ~, ~, ~}$ M_{2}-convex $\rightarrow M_{2}$-convex function
L_{2}-convex $\rightarrow L_{2}$-convex function
L^{\natural}-convex $\rightarrow L^{\natural}$-convex function
L^{\natural}-convex set
M^{\natural}-convex $\rightarrow M^{\natural}$-convex function
an L^{\natural}-convex function is a function obtained as the restriction of an L-convex function. Conversely, an L^{\natural}-convex function determines the corresponding L-convex function up to the constant r in the definition of L-convex function.

An L^{h}-convex function is essentially the same as a submodular integrally convex function of [5], and hence is characterized by discrete midpoint convexity [9]. An L-convex function, enjoying discrete midpoint convexity, is an L^{\natural}-convex function.

Quadratic function

$$
g(p)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} p_{i} p_{j} \quad\left(p \in \mathbf{Z}^{n}\right)
$$

with $a_{i j}=a_{j i} \in \mathbf{Z}$ is L^{h}-convex if and only if $a_{i j} \leq 0(i \neq j)$ and $\sum_{j=1}^{n} a_{i j} \geq 0(i=1, \cdots, n)$. For $\left\{\psi_{i} \in \mathcal{C}_{1} \mid i=1, \cdots, n\right\}$, a separable convex function

$$
g(p)=\sum_{i=1}^{n} \psi_{i}\left(p_{i}\right) \quad\left(p \in \mathbf{Z}^{n}\right)
$$

is L^{h}-convex.
The properties of L-convex functions mentioned above are carried over, mutatis mutandis, to $L^{\text {b }}$-convex functions. In addition, the restriction of an L^{\natural}-convex function g to $U \subseteq V$, denoted g_{U}, is $\mathrm{L}^{\text {h }}$-convex.

A subset of \mathbf{Z}^{V} is called an L^{\natural}-convex set if its indicator function is an L^{\natural}-convex function. A set $E \subseteq \mathbf{Z}^{V}$ is an L^{\natural}-convex set if and only if

$$
p, q \in E \quad \Longrightarrow \quad\left\lceil\frac{p+q}{2}\right\rceil,\left\lfloor\frac{p+q}{2}\right\rfloor \in E .
$$

A function $f: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ with $\operatorname{dom} f \neq$ \emptyset is called M^{\natural}-convex if it is expressed in terms of an M-convex function $\tilde{f}: \mathbf{Z}^{\tilde{V}} \rightarrow \mathbf{Z} \cup\{+\infty\}$ as

$$
\tilde{f}\left(x_{0}, x\right)= \begin{cases}f(x) & \text { if } x_{0}+\sum_{u \in V} x(u)=0 \\ +\infty & \text { otherwise }\end{cases}
$$

Namely, an M^{\natural}-convex function is a function obtained as the projection of an M-convex function. Conversely, an M^{\natural}-convex function determines the corresponding M-convex function up
to a translation of $\operatorname{dom} f$ in the direction of v_{0}. A function $f: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ with $\operatorname{dom} f \neq \emptyset$ is M^{\natural}-convex if and only if (see [21]) it satisfies
$\left(\mathrm{M}^{\natural}-\mathrm{EXC}\right)$ For $x, y \in \operatorname{dom} f$ and $u \in \operatorname{supp}^{+}(x-$ $y)$,

$$
\begin{aligned}
& f(x)+f(y) \\
& \geq \min \left[f\left(x-\chi_{u}\right)+f\left(y+\chi_{u}\right)\right. \\
& \min _{v \in \operatorname{supp}^{-}(x-y)}\left\{f\left(x-\chi_{u}+\chi_{v}\right)\right. \\
& \left.\left.\quad+f\left(y+\chi_{u}-\chi_{v}\right)\right\}\right] .
\end{aligned}
$$

Since (M-EXC) implies (M^{\natural}-EXC), an M-convex function is an M^{\natural}-convex function.

Quadratic function

$$
f(x)=\sum_{i=1}^{n} a_{i} x_{i}^{2}+b \sum_{i<j} x_{i} x_{j} \quad\left(x \in \mathbf{Z}^{n}\right)
$$

with $a_{i} \in \mathbf{Z}(1 \leq i \leq n), b \in \mathbf{Z}$ is $\mathrm{M}^{\text {b }}-$ convex if $0 \leq b \leq 2 \min _{1 \leq i \leq n} a_{i}$ (cf. [21]). For $\left\{\varphi_{i} \in \mathcal{C}_{1} \mid i=0,1, \cdots, n\right\}$, a function of the form

$$
f(x)=\varphi_{0}\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{i=1}^{n} \varphi_{i}\left(x_{i}\right) \quad\left(x \in \mathbf{Z}^{n}\right)
$$

is M^{\natural}-convex [21]; a separable convex function is a special case of this (with $\varphi_{0}=0$). More generally, for $\left\{\varphi_{X} \in \mathcal{C}_{1} \mid X \in \mathcal{T}\right\}$ indexed by a laminar family $\mathcal{T} \subseteq 2^{V}$, the function

$$
f(x)=\sum_{X \in \mathcal{T}} \varphi_{X}(x(X)) \quad\left(x \in \mathbf{Z}^{V}\right)
$$

is M^{\natural}-convex [1], where \mathcal{T} is called laminar if for any $X, Y \in \mathcal{T}$, at least one of $X \cap Y, X \backslash Y$, $Y \backslash X$ is empty.

The properties of M-convex functions mentioned above are carried over, mutatis mutandis, to M^{\natural}-convex functions. In addition, the projection of an M^{\natural}-convex function f to $U \subseteq V$, denoted f^{U}, is M^{\natural}-convex.

A subset of \mathbf{Z}^{V} is called an M^{\natural}-convex set if its indicator function is an M^{\natural}-convex function. A set $Q \subseteq \mathbf{Z}^{V}$ is an M^{\natural}-convex set if and only if Q is the set of integer points of an integral
generalized polymatroid (cf. [7] for generalized polymatroids).

As a consequence of the conjugacy between Land M-convexity, L^{\natural}-convex functions and M^{\natural} convex functions are conjugate to each other under the integral Fenchel-Legendre transformation.
Duality. Discrete duality theorems hold true for L-convex/concave and M-convex/concave functions. A function $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{-\infty\}$ is called L-concave (resp., $\mathrm{L}^{\natural}-, \mathrm{M}-$, or M^{\natural}-concave) if $-g$ is L-convex (resp., L^{h}-, M^{-}, or M^{\natural}-convex); dom g means the effective domain of $-g$. The concave counterpart of the discrete FenchelLegendre transform is defined as

$$
g^{\circ}(p)=\inf \left\{\langle p, x\rangle-g(x) \mid x \in \mathbf{Z}^{V}\right\} \quad\left(p \in \mathbf{Z}^{V}\right)
$$

A discrete separation theorem for Lconvex/concave functions, named L-separation theorem [18] (see also [10]), reads as follows. Let $f: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ be an $\mathrm{L}^{\text {}}$-convex function and $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{-\infty\}$ be an $L^{\text {b }}-$ concave function such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$ or $\operatorname{dom} f^{\bullet} \cap \operatorname{dom} g^{\circ} \neq \emptyset$. If $f(p) \geq g(p)\left(p \in \mathbf{Z}^{V}\right)$, there exist $\beta^{*} \in \mathbf{Z}$ and $x^{*} \in \mathbf{Z}^{V}$ such that

$$
f(p) \geq \beta^{*}+\left\langle p, x^{*}\right\rangle \geq g(p) \quad\left(p \in \mathbf{Z}^{V}\right)
$$

Since a submodular set function can be identified with a positively homogeneous Lconvex function, the L-separation theorem implies Frank's discrete separation theorem for a pair of sub/supermodular functions [6], which reads as follows. Let $\rho: 2^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ and $\mu: 2^{V} \rightarrow \mathbf{Z} \cup\{-\infty\}$ be submodular and supermodular functions, respectively, with $\rho(\emptyset)=$ $\mu(\emptyset)=0, \rho(V)<+\infty, \mu(V)>-\infty$, where μ is called supermodular if $-\mu$ is submodular. If $\rho(X) \geq \mu(X)(X \subseteq V)$, there exists $x^{*} \in \mathbf{Z}^{V}$ such that

$$
\rho(X) \geq x^{*}(X) \geq \mu(X) \quad(X \subseteq V)
$$

Another discrete separation theorem, M separation theorem $[14,18]$ (see also [10]), holds true for M-convex/concave functions. Namely, let $f: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ be an M^{\natural}-convex
function and $g: \mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{-\infty\}$ be an M^{\natural} concave function such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$ or $\operatorname{dom} f^{\bullet} \cap \operatorname{dom} g^{\circ} \neq \emptyset$. If $f(x) \geq g(x)\left(x \in \mathbf{Z}^{V}\right)$, there exist $\alpha^{*} \in \mathbf{Z}$ and $p^{*} \in \mathbf{Z}^{V}$ such that

$$
f(x) \geq \alpha^{*}+\left\langle p^{*}, x\right\rangle \geq g(x) \quad\left(x \in \mathbf{Z}^{V}\right)
$$

The L- and M-separation theorems are conjugate to each other, while a self-conjugate statement can be made in the form of the Fencheltype duality $[14,18]$, as follows. Let $f: \mathbf{Z}^{V} \rightarrow$ $\mathbf{Z} \cup\{+\infty\}$ be an L^{\natural}-convex function and g : $\mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{-\infty\}$ be an L^{\natural}-concave function such that $\operatorname{dom} f \cap \operatorname{dom} g \neq \emptyset$ or $\operatorname{dom} f^{\bullet} \cap \operatorname{dom} g^{\circ} \neq \emptyset$. Then it holds that

$$
\begin{aligned}
& \inf \left\{f(p)-g(p) \mid p \in \mathbf{Z}^{V}\right\} \\
& =\sup \left\{g^{\circ}(x)-f^{\bullet}(x) \mid x \in \mathbf{Z}^{V}\right\}
\end{aligned}
$$

Moreover, if this common value is finite, the infimum is attained by some $p \in \operatorname{dom} f \cap \operatorname{dom} g$ and the supremum is attained by some $x \in$ $\operatorname{dom} f^{\bullet} \cap \operatorname{dom} g^{\circ}$.

Here is a simple example to illustrate the subtlety of discrete separation for discrete functions. Functions $f: \mathbf{Z}^{2} \rightarrow \mathbf{Z}$ and $g: \mathbf{Z}^{2} \rightarrow \mathbf{Z}$ defined by $f\left(x_{1}, x_{2}\right)=\max \left(0, x_{1}+x_{2}\right)$ and $g\left(x_{1}, x_{2}\right)=\min \left(x_{1}, x_{2}\right)$ can be extended respectively to a convex function $\bar{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and a concave function $\bar{g}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ according to the defining expressions. With $\bar{p}=\left(\frac{1}{2}, \frac{1}{2}\right)$, we have $\bar{f}(x) \geq\langle\bar{p}, x\rangle \geq \bar{g}(x)$ for all $x \in \mathbf{R}^{2}$, and a fortiori, $f(x) \geq\langle\bar{p}, x\rangle \geq g(x)$ for all $x \in \mathbf{Z}^{2}$. However, there exists no integral vector $p \in \mathbf{Z}^{2}$ such that $f(x) \geq\langle p, x\rangle \geq g(x)$ for all $x \in \mathbf{Z}^{2}$. Note also that f is M^{\natural}-convex and g is L-concave.
Network duality. A conjugate pair of M- and L-convex functions can be transformed through a network ([14, 17]; see also [25]). Let $G=(V, A)$ be a directed graph with arc set A and vertex set V partitioned into three disjoint parts as $V=V^{+} \cup V^{0} \cup V^{-}$. For $\varphi_{a} \in \mathcal{C}_{1}(a \in A)$ and M-convex $f: \mathbf{Z}^{V^{+}} \rightarrow \mathbf{Z} \cup\{+\infty\}$, define $\tilde{f}: \mathbf{Z}^{V^{-}} \rightarrow \mathbf{Z} \cup\{ \pm \infty\}$ by

$$
\begin{aligned}
\tilde{f}(y)= & \inf _{\xi, x}\left\{f(x)+\sum_{a \in A} \varphi_{a}(\xi(a)) \mid\right. \\
& \left.\partial \xi=(x, 0,-y) \in \mathbf{Z}^{V^{+} \cup V^{0} \cup V^{-}}, \xi \in \mathbf{Z}^{A}\right\}
\end{aligned}
$$

For $\psi_{a} \in \mathcal{C}_{1}(a \in A)$ and L-convex $g: \mathbf{Z}^{V^{+}} \rightarrow$ $\mathbf{Z} \cup\{+\infty\}$, define $\tilde{g}: \mathbf{Z}^{V^{-}} \rightarrow \mathbf{Z} \cup\{ \pm \infty\}$ by

$$
\begin{aligned}
\tilde{g}(q)= & \inf _{\eta, p, r}\left\{g(p)+\sum_{a \in A} \psi_{a}(\eta(a)) \mid \eta=-\delta(p, r, q)\right. \\
& \left.\eta \in \mathbf{Z}^{A},(p, r, q) \in \mathbf{Z}^{V^{+} \cup V^{0} \cup V^{-}}\right\}
\end{aligned}
$$

Then \tilde{f} is M-convex, provided that $\tilde{f}>-\infty$, and \tilde{g} is L-convex, provided that $\tilde{g}>-\infty$. If $g=f^{\bullet}$ and $\psi_{a}=\varphi_{a}^{\bullet}(a \in A)$, then $\tilde{g}=\tilde{f}^{\bullet}$. A special case $\left(V^{+}=V\right)$ of the last statement yields the network duality: $\inf \{\Phi(x, \xi) \mid$ $\left.\partial \xi=x, x \in \mathbf{Z}^{V}, \xi \in \mathbf{Z}^{A}\right\}=\sup \{\Psi(p, \eta) \mid$ $\left.\eta=-\delta p, p \in \mathbf{Z}^{V}, \eta \in \mathbf{Z}^{A}\right\}$, where $\Phi(x, \xi)=$ $f(x)+\sum_{a \in A} \varphi_{a}(\xi(a)), \Psi(p, \eta)=-g(p)-$ $\sum_{a \in A} \psi_{a}(\eta(a))$ and the finiteness of $\inf \Phi$ or $\sup \Psi$ is assumed. The network duality is equivalent to the Fenchel-type duality.
Subdifferentials. The subdifferential of f : $\mathbf{Z}^{V} \rightarrow \mathbf{Z} \cup\{+\infty\}$ at $x \in \operatorname{dom} f$ is defined by $\left\{p \in \mathbf{R}^{V} \mid f(y)-f(x) \geq\langle p, y-x\rangle\left(\forall y \in \mathbf{Z}^{V}\right)\right\}$. The subdifferential of an L_{2} - or M_{2}-convex function forms an integral polyhedron. More specifically:

- The subdifferential of an L-convex function is an integral base polyhedron (an Mconvex polyhedron).
- The subdifferential of an L_{2}-convex function is the intersection of two integral base polyhedra (M-convex polyhedra).
- The subdifferential of an M-convex function is an L-convex polyhedron.
- The subdifferential of an M_{2}-convex function is the Minkowski sum of two L-convex polyhedra.

Similar statements hold true with L and M replaced respectively by L^{\natural} and M^{\natural}.
Algorithms. On the basis of the equivalence of L^{\natural}-convex functions and submodular integrally convex functions, the minimization of an L-convex function can be done by the algorithm of [5], which relies on the ellipsoid method. The minimization of an M-convex function can be done by purely combinatorial algorithms;
a greedy-type algorithm [2] for valuated matroids and a domain reduction-type polynomialtime algorithm [27] for M-convex functions. Algorithms for duality of M -convex functions (in other words, for M_{2}-convex functions) are also developed; polynomial algorithms [16, 24] for valuated matroids, and a finite primal algorithm [13] and a polynomial-time conjugate-scaling algorithm [11] for the submodular flow problem.

Applications. A discrete analogue of the conjugate duality framework [23] for nonlinear optimization is developed in [18]. An application of M-convex functions to engineering system analysis and matrix theory is in $[15,19]$. M-convex functions find applications also in mathematical economics [1].

References

[1] Danilov, V., Koshevoy, G., and Murota, K.: Equilibria in economies with indivisible goods and money, RIMS Preprint 1204, Kyoto University, May 1998.
[2] Dress, A.W.M., and Wenzel, W.: 'Valuated matroid: A new look at the greedy algorithm', Applied Mathematics Letters 3, no. 2 (1990), 33-35.
[3] Dress, A.W.M., and Wenzel, W.: 'Valuated matroids', Advances in Mathematics 93 (1992), 214250.
[4] Edmonds, J.: 'Submodular functions, matroids and certain polyhedra', Combinatorial Structures and Their Applications, in N. Sauer R. Guy, H. Hanani and J. Schönheim (eds.). Gordon and Breach, New York, 1970, pp. 69-87.
[5] Favati, P., and Tardella, F.: 'Convexity in nonlinear integer programming', Ricerca Operativa 53 (1990), 3-44.
[6] Frank, A.: 'An algorithm for submodular functions on graphs', Annals of Discrete Mathematics 16 (1982), 97-120.
[7] Frank, A., and Tardos, É.: 'Generalized polymatroids and submodular flows', Mathematical Programming 42 (1988), 489-563.
[8] Fujishige, S.: Submodular Functions and Optimization, Vol. 47, North-Holland, Amsterdam, 1991.
[9] Fujishige, S., and Murota, K.: On the relationship between L-convex functions and submodular integrally convex functions, RIMS Preprint 1152, Kyoto University, August 1997.
[10] Fujishige, S., and Murota, K.: Short proofs of the separation theorems for L-convex/concave and M-convex/concave functions, RIMS Preprint 1167, Kyoto University, October 1997.
[11] Iwata, S., and Shigeno, M.: ‘Conjugate scaling technique for Fenchel-type duality in discrete optimization', IPSJ SIG Notes 98-AL-65 (1998).
[12] LovÁsz, L.: 'Submodular functions and convexity', Mathematical Programming - The State of the Art, in M. Grötschel A. Bachem and B. Korte (eds.). Springer-Verlag, Berlin, 1983, pp. 235-257.
[13] Murota, K.: Submodular flow problem with a nonseparable cost function, Tech. Rep. 95843-OR, Forschungsinstitut für Diskrete Mathematik, Universität Bonn, March 1995, Revised version: RIMS Preprint 1061, Kyoto University (January 1996).
[14] Murota, K.: 'Convexity and Steinitz's exchange property', Advances in Mathematics 124 (1996), 272-311.
[15] Murota, K.: 'Structural approach in systems analysis by mixed matrices - An exposition for index of DAE', ICIAM 95, in O. Mahrenholtz K. Kirchgässner and R. Mennicken (eds.), Vol. 87 of Mathematical Research. Akademie Verlag, 1996, pp. 257-279.
[16] Murota, K.: 'Valuated matroid intersection, I: optimality criteria, II: algorithms', SIAM Journal on Discrete Mathematics 9 (1996), 545-561, 562-576.
[17] Murota, K.: 'Discrete convex analysis', Discrete Structures and Algorithms, in S. Fujishige (ed.), Vol. V. Kindai-Kagaku-sha, Tokyo, 1998, pp. 51100, in Japanese.
[18] Murota, K.: 'Discrete convex analysis', Mathematical Programming (to appear).
[19] Murota, K.: 'On the degree of mixed polynomial matrices', SIAM Journal on Matrix Analysis and Applications (to appear).
[20] Murota, K., and Shioura, A.: Polyhedral Mconvex and L-convex functions - Two classes of combinatorial convexity over real space, presented at NACA98 (Niigata, July 1998).
[21] Murota, K., and Shioura, A.: 'M-convex function on generalized polymatroid', Mathematics of Operations Research (to appear).
[22] Rockafellar, R. T.: Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[23] Rockafellar, R. T.: Conjugate Duality and Optimization, SIAM Regional Conference in Applied Mathematics. SIAM, Philadelphia, 1974.
[24] Shigeno, M.: A Dual Approximation Approach to Matroid Optimization Problems, PhD thesis, Tokyo Institute of Technology, 1996.
[25] Shioura, A.: 'A constructive proof for the induction of M-convex functions through networks', Discrete Applied Mathematics 82 (1998), 271-278.
[26] Shioura, A.: Level set characterization of M-convex functions, Research Report 21, Department of Mechanical Engineering, Sophia University, February 1998.
[27] Shioura, A.: 'Minimization of an M-convex function', Discrete Applied Mathematics 84 (1998), 215220.

Kazuo Murota

Research Institute for Mathematical Sciences
Kyoto University Kyoto 606-8502 Japan E-mail address: murota@kurims.kyoto-u.ac.jp AMS 1991 Subject Classification: 90C27, 90C25, 90C10, 90C35 .
Key words and phrases: L-convexity, Mconvexity, discrete convex analysis, submodular function, matroid.

