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1 Introduction

Convexity for discrete functions has been a continual research topic. Among others,

Miller [13] was a forerunner in the early seventies; in the early eighties, Frank [5],

Fujishige [8, 9], Lovász [12] investigated submodular set functions in terms of

discrete convexity, while Kindler [11] gave a general setting for discrete separation

theorems.

In [4] Favati and Tardella have introduced a class of discrete functions (integer-

valued functions defined on integer lattice points) called integrally convex func-

tions. For a function g : Zn → Z∪{+∞} its piecewise-convex extension g : Rn →
R ∪ {+∞} is defined by

g(b) = min{
∑

p∈N(b)

λpg(p) |
∑

p∈N(b)

λpp = b,
∑

p∈N(b)

λp = 1, λp ≥ 0 (p ∈ N(b))}, b ∈ Rn,

where

N(b) = {p ∈ Zn | bbic ≤ pi ≤ dbie (i = 1, . . . , n)}, b ∈ Rn,

denotes the set of the vertices of the smallest rectangle that contains b ∈ Rn in

its convex hull. Here it should be clear that btc = max{a ∈ Z | a ≤ t} and

dte = min{a ∈ Z | a ≥ t} for t ∈ R. By construction, g is convex in each unit

hypercube and g(p) = g(p) for p ∈ Zn. A function g : Zn → Z ∪ {+∞} is said

to be integrally convex if its piecewise-convex extension g : Rn → R ∪ {+∞} is

(globally) convex. In the original definition, the effective domain of g:

dom g = {p ∈ Zn | g(p) < +∞}

of an integrally convex function g is assumed to be a discrete rectangle (“box”).

In this paper, however, we allow dom g to be a more general nonempty set. A

function g : Zn → Z ∪ {+∞} with dom g 6= ∅ is said to be submodular if

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q), p, q ∈ Zn,

where p∨ q and p∧ q are, respectively, the vectors of componentwise maxima and

minima, i.e.,

(p ∨ q)i = max(pi, qi), (p ∧ q)i = min(pi, qi), i = 1, . . . , n.

See Edmonds [3], Frank–Tardos [7], Fujishige [10], Lovász [12], and Topkis [21] for

general background on submodular functions.

It is shown in Favati–Tardella [4] that a global minimum of an integrally convex

function g over a discrete rectangle can be characterized as a local minimum, i.e.,
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for p ∈ dom g, we have g(p) ≤ g(q) for all q ∈ Zn if and only if g(p) ≤ g(q) for all

q ∈ Zn with ||p − q||∞ = 1, where

||p − q||∞ = max
1≤i≤n

|pi − qi|.

It is also shown in Favati–Tardella [4] that a submodular integrally convex function

over a discrete rectangle can be minimized in polynomial time.

Furthermore, a succinct characterization of submodular integrally convex func-

tions over a discrete rectangle has been obtained in Favati–Tardella [4]

Theorem 1.1 (Favati–Tardella [4, Cor.5.2.2]) A submodular function g : Zn →
Z∪{+∞} with a nonempty discrete rectangle effective domain is integrally convex

if and only if

g(p) + g(q) ≥ g
(⌈

p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
, ||p − q||∞ = 2, p, q ∈ Zn.

2

It should be clear that dpe = (dpie | i = 1, . . . , n) ∈ Zn and bpc = (bpic | i =

1, . . . , n) ∈ Zn for p = (pi | i = 1, . . . , n) ∈ Rn. Note that the above theorem

implies the following as an immediate corollary.

Corollary 1.2 A function g : Zn → Z∪{+∞} with a nonempty discrete rectangle

effective domain is submodular and integrally convex if and only if

g(p) + g(q) ≥ g
(⌈

p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
, ||p − q||∞ ≤ 2, p, q ∈ Zn.

2

Another class of discrete functions, called L-convex functions, has been intro-

duced by Murota [17] as a generalization of the Lovász extension of submodular set

functions. A function g̃ : Zñ → Z ∪ {+∞} with dom g̃ 6= ∅ is said to be L-convex

if

g̃(p̃) + g̃(q̃) ≥ g̃(p̃ ∨ q̃) + g̃(p̃ ∧ q̃), p̃, q̃ ∈ Zñ, (1.1)

∃r ∈ Z, ∀p̃ ∈ Zñ : g̃(p̃ + 1̃) = g̃(p̃) + r, (1.2)

where 1̃ = (1, 1, . . . , 1) ∈ Zñ. It can be shown [17] that the Lovász extension of

an integer-valued submodular set function (Lovász [12]; see also Fujishige [9, 10])
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is nothing but an L-convex function that has an additional property of positive

homogeneity:

g̃(αp̃) = αg̃(p̃), 0 < α ∈ Z, p̃ ∈ Zñ.

The second condition in the definition of L-convexity means the linearity of g̃ in

the direction of 1̃. In this paper we assume r = 0, a kind of normalization, unless

otherwise stated. That is, we shall say g̃ : Zñ → Z ∪ {+∞} with dom g̃ 6= ∅ is

L-convex if it is submodular and

g̃(p̃ + 1̃) = g̃(p̃), p̃ ∈ Zñ. (1.3)

The following fact is observed in [18] on the basis of an argument in [17]; the

proof is given in §4.

Theorem 1.3 (Murota [18]) An L-convex function (with any r in (1.2)) is sub-

modular and integrally convex. 2

It is shown in [17] that L-convex functions are in one-to-one correspondence

with M-convex functions, yet another class of discrete functions introduced in

Murota [16] as a generalization of valuated matroids due to Dress–Wenzel [1, 2]

(see §3.1 for M-convex functions and this correspondence). This correspondence

is based on a discrete analogue of the Fenchel–Legendre transformation in convex

analysis (Rockafellar [20]) and generalizes a fundamental fact in matroid theory

(Welsh [22], White [23]) that the submodularity of the rank function is crypto-

morphically equivalent to the exchange axiom for independent sets. Furthermore,

a discrete separation theorem has been established for L-convex functions as well

as for M-convex functions (see §3.2 for separation theorems).

This paper reveals the equivalence between L-convex functions and submodular

integrally convex functions: For an L-convex function g̃(p0, p1, . . . , pn), the function

g defined by g(p1, . . . , pn) = g̃(0, p1, . . . , pn) is a submodular integrally convex

function, and conversely, for a submodular integrally convex function g(p1, . . . , pn),

the function g̃ defined by

g̃(p0, p1, . . . , pn) = g(p1 − p0, . . . , pn − p0) (1.4)

is an L-convex function. This fact implies, in combination with known results for

L-convex functions and M-convex functions, that a discrete separation theorem

holds for submodular integrally convex functions and that submodular integrally

convex functions are the Fenchel–Legendre conjugates of M-convex functions on

generalized polymatroids considered in Murota–Shioura [19]. The results are de-

scribed in §2 with their proofs in §4. The implications of the present results are

discussed in §3.
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2 Results

The main result of this paper is the following.

Theorem 2.1 A function g : Zn → Z∪{+∞} is submodular and integrally convex

if and only if g(p1, . . . , pn) = g̃(0, p1, . . . , pn) for some L-convex function g̃ : Zñ →
Z ∪ {+∞} with ñ = n + 1. Such an L-convex function g̃ is uniquely determined

by g as g̃(p0, p1, . . . , pn) = g(p1 − p0, . . . , pn − p0). 2

This theorem is proven on the basis of the following theorem, which includes

some properties not needed for the proof but worth mentioning in their own right.

The proofs are given in §4.

We put V = {1, . . . , n} and denote the characteristic vector of X ⊆ V by

χX ∈ {0, 1}V .

Theorem 2.2 For g : ZV → Z ∪ {+∞} the following conditions, (a) to (f), are

equivalent:

(a) Submodularity (SBM):

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q), p, q ∈ ZV (2.1)

& Integral convexity (IC): g is integrally convex;

(b) Discrete midpoint convexity (MPC):

g(p) + g(q) ≥ g
(⌈

p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
, p, q ∈ ZV ; (2.2)

(c) Local discrete midpoint convexity (L-MPC):

g(p) + g(q) ≥ g
(⌈

p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
, ||p − q||∞ ≤ 2, p, q ∈ ZV (2.3)

& Domain condition (DOM):

p, q ∈ dom g, 0 ≤ α ∈ Z =⇒ (p − α1) ∨ q, p ∧ (q + α1) ∈ dom g; (2.4)

(d) Local submodularity (L-SBM):

g(p + χX) + g(p + χY ) ≥ g(p + χX∪Y ) + g(p + χX∩Y ), X, Y ⊆ V, p ∈ ZV (2.5)

& Local projected submodularity (L-PR-SBM):

g(p + χX + 1) + g(p + χY ) ≥ g(p + χX∪Y ) + g(p + χX∩Y + 1), X, Y ⊆ V, p ∈ ZV

(2.6)
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& DOM (2.4);

(e) Projected submodularity (PR-SBM):

g(p) + g(q) ≥ g((p − α1) ∨ q) + g(p ∧ (q + α1)), 0 ≤ α ∈ Z, p, q ∈ ZV ; (2.7)

(f) Unit projected submodularity (UPR-SBM):

g(p) + g(q) ≥ g((p − 1) ∨ q) + g(p ∧ (q + 1)), p, q ∈ ZV (2.8)

& SBM (2.1). 2

Remark 2.1 As already mentioned in Corollary 1.2, the equivalence between (a)

and (c) for g with a discrete rectangle effective domain has been shown by Favati–

Tardella [4]. 2

Remark 2.2 For g with a general dom g, the local characterizations in Theorem

1.1 and Corollary 1.2 are valid only under a certain assumption, like (2.4), on

dom g. Consider, for example, g : Z2 → Z ∪ {+∞} with dom g = {(3, 0), (0, 3)}.
This function vacuously satisfies the local discrete midpoint convexity (2.3), but

is not a submodular integrally convex function. Because of this possible technical

complication we shall provide in §4 self-contained proofs without relying on an

innocent extension of Corollary 1.2, though it turns out to be correct. 2

Remark 2.3 The domain condition DOM (2.4) is equivalent to a seemingly weaker

condition:

p, q ∈ dom g, α ∈ {0, 1} =⇒ (p − α1) ∨ q, p ∧ (q + α1) ∈ dom g. (2.9)

2

6



3 Implications

3.1 Conjugacy

L-convex functions are known to be the Fenchel–Legendre conjugates of M-convex

functions. In this section we explain this result and point out important implica-

tions of the present result in relation to conjugacy.

Put Ṽ = {0, 1, . . . , n}. A function f̃ : ZṼ → Z∪ {+∞} with dom f̃ 6= ∅ is said

to be M-convex if the following variant of the simultaneous exchange axiom holds

true:

(M-EXC) For x̃, ỹ ∈ dom f̃ and i ∈ supp+(x̃ − ỹ) there exists j ∈ supp−(x̃ − ỹ)

such that

f̃(x̃) + f̃(ỹ) ≥ f̃(x̃ − χi + χj) + f̃(ỹ + χi − χj).

where χi is the characteristic vector of i ∈ Ṽ , and we denote the positive support

and the negative support of x̃ = (x̃i | i ∈ Ṽ ) ∈ ZṼ by

supp+(x̃) = {i ∈ Ṽ | x̃i > 0}, supp−(x̃) = {i ∈ Ṽ | x̃i < 0}.

The concept of M-convex function is a quantitative generalization of that of in-

tegral base set (=the set of integer points in the base polyhedron of an integral

submodular system; see [10] for submodular systems). Note that dom f̃ is an inte-

gral base set if f̃ is M-convex. When dom f̃ ⊆ {0, 1}Ṽ , f̃ is M-convex if and only

if −f̃ is a matroid valuation in the sense of Dress–Wenzel [1, 2].

For a function f̃ : ZṼ → Z∪ {+∞} in general, we define its (integral Fenchel–

Legendre) conjugate f̃• : ZṼ → Z ∪ {+∞} by

f̃•(p̃) = sup{〈p̃, x̃〉 − f̃(x̃) | x̃ ∈ ZṼ }, p̃ ∈ ZṼ , (3.1)

where 〈p̃, x̃〉 =
∑

i∈Ṽ p̃i x̃i. The mapping f̃ 7→ f̃• is called the (convex) integral

Fenchel–Legendre transformation.

Theorem 3.1 (Murota [17]) The class of L-convex functions L (without the

normalization of r = 0 in (1.2)) and that of M-convex functions M are in one-

to-one correspondence under the integral Fenchel–Legendre transformation (3.1).

That is, for g̃ ∈ L and f̃ ∈ M we have g̃• ∈ M, f̃• ∈ L, g̃•• = g̃, and f̃•• = f̃ . 2

It is known (cf. [10, Theorem 3.58]) that a generalized polymatroid of Frank [6]

(see also Frank–Tardos [7]) is the projection of a base polyhedron along an axis.
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Motivated by this fact, Murota–Shioura [19] considered M-convex functions on

generalized polymatroids, which we name here M\-convex functions. By definition,

a function f : ZV → Z∪{+∞}, where V = {1, . . . , n}, is M\-convex if the function

f̃ : ZṼ → Z ∪ {+∞} defined by

f̃(x0, x) =

 f(x) (x0 = −x(V ))

+∞ (otherwise)
(3.2)

is M-convex, where x(V ) =
∑

i∈V xi. A translation of exchange axiom (M-EXC)

for f̃ results in an axiom for an M\-convex function f (see Murota–Shioura [19]):

(M\-EXC) For x, y ∈ dom f and i ∈ supp+(x − y),

f(x) + f(y) ≥ min

[
f(x − χi) + f(y + χi),

min
j∈supp−(x−y)

{f(x − χi + χj) + f(y + χi − χj)}
]
.

For symmetry of terminology, we say a function g : ZV → Z ∪ {+∞} with

dom g 6= ∅ is L\-convex if g(p) = g̃(0, p) (cf. (1.4)) for some L-convex function g̃.

By Theorem 2.1, g is L\-convex if it satisfies one of the equivalent conditions, (a) to

(f), in Theorem 2.2. In particular, L\-convex function is a synonym of submodular

integrally convex function.

Theorem 2.1, Theorem 3.1 and a general lemma below imply the following.

Theorem 3.2 The class of L\-convex functions and that of M\-convex functions

are in one-to-one correspondence under the integral Fenchel–Legendre transforma-

tion (3.1). 2

Lemma 3.3 The relation (3.2) between f and f̃ implies (1.4) for g = f• and

g̃ = f̃•. Conversely, (1.4) between g and g̃ implies (3.2) for f = g• and f̃ = g̃•.

(Proof)

f̃•(p0, p) = sup{p0x0 + 〈p, x〉 − f̃(x0, x) | x0 ∈ Z, x ∈ ZV }
= sup{−p0x(V ) + 〈p, x〉 − f(x) | x ∈ ZV }
= sup{〈p − p01, x〉 − f(x) | x ∈ ZV }
= f•(p − p01).
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Conversely,

g̃•(x0, x) = sup{p0x0 + 〈p, x〉 − g̃(p0, p) | p0 ∈ Z, p ∈ ZV }
= sup{p0(x0 + x(V )) + 〈p − p01, x〉 − g(p − p01) | p0 ∈ Z, p ∈ ZV }
= sup{p0(x0 + x(V )) + 〈p′, x〉 − g(p′) | p0 ∈ Z, p′ ∈ ZV }

=

 g•(x) (x0 = −x(V ))

+∞ (otherwise)

2

3.2 Duality

A discrete separation theorem is known to hold for L-convex functions. The present

result implies that this is also true for L\-convex functions.

Similarly to (3.1), define the concave conjugate of a function h̃ : ZṼ → Z ∪
{−∞} by

h̃◦(p̃) = inf{〈p̃, x̃〉 − h̃(x̃) | x̃ ∈ ZṼ }, p̃ ∈ ZṼ . (3.3)

We say h̃ is L-concave if −h̃ is L-convex.

The following theorem, called L-separation theorem in [17], may be viewed

as a generalization of the discrete separation theorem of Frank [5] for integral

submodular set functions.

Theorem 3.4 (Murota [17]) Let g̃ : ZṼ → Z ∪ {+∞} be an L-convex function

and h̃ : ZṼ → Z ∪ {−∞} be an L-concave function such that dom g̃ ∩ dom h̃ 6= ∅
or dom g̃• ∩ dom h̃◦ 6= ∅. If g̃(p̃) ≥ h̃(p̃) (p̃ ∈ ZṼ ), there exist β ∈ Z and x̃ ∈ ZṼ

such that

g̃(p̃) ≥ β + 〈p̃, x̃〉 ≥ h̃(p̃), p̃ ∈ ZṼ .

2

As an immediate corollary, we obtain a discrete separation theorem for L\-

convex functions. Naturally, h is L\-concave if −h is L\-convex.

Theorem 3.5 Let g : ZV → Z ∪ {+∞} be an L\-convex function and h : ZV →
Z ∪ {−∞} be an L\-concave function such that dom g ∩ dom h 6= ∅ or dom g• ∩
dom h◦ 6= ∅. If g(p) ≥ h(p) (p ∈ ZV ), there exist β ∈ Z and x ∈ ZV such that

g(p) ≥ β + 〈p, x〉 ≥ h(p), p ∈ ZV .
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(Proof) Define g̃(p0, p1, . . . , pn) = g(p1 − p0, . . . , pn − p0) and h̃(p0, p1, . . . , pn) =

h(p1 − p0, . . . , pn − p0). The assertion follows from Theorem 3.4 and the following:

g(p) ≥ h(p) (∀p ∈ ZV )

=⇒ g̃(p0, p) ≥ h̃(p0, p) (∀(p0, p) ∈ ZṼ )

=⇒ ∃β ∈ Z, x0 ∈ Z, x ∈ ZV :

g̃(p0, p) ≥ β + p0x0 + 〈p, x〉 ≥ h̃(p0, p) (∀(p0, p) ∈ ZṼ )

=⇒ g(p) ≥ β + 〈p, x〉 ≥ h(p) (∀p ∈ ZV ).

2

The separation theorem above can be reformulated as a Fenchel-type min-max

duality relation as follows.

Theorem 3.6 Let g : ZV → Z ∪ {+∞} be an L\-convex function and h : ZV →
Z ∪ {−∞} be an L\-concave function such that dom g ∩ dom h 6= ∅ or dom g• ∩
dom h◦ 6= ∅. Then we have

inf{g(p) − h(p) | p ∈ ZV } = sup{h◦(x) − g•(x) | x ∈ ZV }.

If this common value is finite, the infimum is attained by some p ∈ dom g ∩ dom h

and the supremum is attained by some x ∈ dom g• ∩ dom h◦. 2

See Murota [16, 17] for the Fenchel-type duality on M-/L-convex and concave

functions, as well as for the equivalence between the separation theorem and the

Fenchel-type duality. It is mentioned that Fujishige [8] formulated the matroid

intersection theorem of Edmonds [3] as a Fenchel-type duality for submodular

and supermodular functions, whereas Murota [15] rewrote the valuated matroid

intersection theorem of Murota [14] as another Fenchel-type duality.
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4 Proofs

Proof of Theorem 1.3: The submodularity is obvious from the definition. By

submodularity the piecewise-convex extension is given by the Lovász extension in

each unit hypercube. By translation property (1.2), the convexity in the neigh-

borhood of the boundary of unit hypercubes is reduced to that in the interior of a

unit hypercube. See the proof of Theorem 4.18 of [17] for more details. 2

As an immediate corollary of Theorem 1.3 we obtain the following.

Lemma 4.1 If g(p1, . . . , pn) = g̃(0, p1, . . . , pn) for an L-convex function g̃, then g

satisfies IC (integral convexity) and SBM (2.1). 2

Proof of Theorem 2.2: Assume g̃(p0, p1, . . . , pn) = g(p1−p0, . . . , pn−p0), which

means g̃ satisfies (1.3). Theorem 2.2 is proven according to the following diagram

on the basis of a series of lemmas to be established below.

(f) SBM & UPR-SBM ⇐= (e) PR-SBMwwÄ Lemma 4.6 (trivial)
~wÄ Lemma 4.3

(b) MPC ⇐= (a) IC & SBM ⇐= Submodularity (1.1) of g̃

Lemma 4.7 Lemma 4.1wwÄ Lemma 4.9
~ww

(c) L-MPC & DOM Lemma 4.2wwÄ Lemma 4.10
wwÄ

(d) L-SBM ⇐==⇒ Local submodularity (4.2)

& L-PR-SBM Lemmas 4.4, 4.5 & domain condition (4.1)

& DOM of g̃

Proof of Theorem 2.1: The “if” part is already shown in Lemma 4.1. The

“only if” part can be seen easily from the above diagram. Given a submodular

integrally convex function g, define g̃ by g̃(p0, p1, . . . , pn) = g(p1 − p0, . . . , pn − p0).

The second condition (1.3) for L-convexity is met, whereas the above diagram

shows that the submodularity (1.1) is implied by (a) IC & SBM. 2

A series of lemmas follows.

Lemma 4.2 Suppose the effective domain of g̃ : Zñ → Z∪{+∞} has the property:

p̃, q̃ ∈ dom g̃ =⇒ p̃ ∨ q̃, p̃ ∧ q̃, p̃ + 1̃ ∈ dom g̃. (4.1)

Then submodularity (1.1) is equivalent to local submodularity:

g̃(p̃) + g̃(q̃) ≥ g̃(p̃ ∨ q̃) + g̃(p̃ ∧ q̃), ||p̃ − q̃||∞ = 1, p̃, q̃ ∈ Zñ. (4.2)
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(Proof) We prove (1.1) by induction on ||p̃ − q̃||∞. Suppose p̃, q̃ ∈ dom g̃ and

||p̃ − q̃||∞ ≥ 2. For p̃∗ = ((p̃ ∧ q̃) + 1) ∧ (p̃ ∨ q̃) we have p̃ ∧ q̃ ≤ p̃∗ ≤ p̃ ∨ q̃ and

p̃∗ ∈ dom g̃ by (4.1). Since

||p̃∗ − p̃||∞ ≤ ||p̃ − q̃||∞ − 1, ||p̃∗ − q̃||∞ ≤ ||p̃ − q̃||∞ − 1,

we see by the induction hypothesis that

g̃(p̃) + g̃(p̃∗) ≥ g̃(p̃ ∨ p̃∗) + g̃(p̃ ∧ p̃∗), (4.3)

g̃(q̃) + g̃(p̃∗) ≥ g̃(q̃ ∨ p̃∗) + g̃(q̃ ∧ p̃∗). (4.4)

In particular we have p̃ ∨ p̃∗, q̃ ∨ p̃∗, p̃ ∧ p̃∗, q̃ ∧ p̃∗ ∈ dom g̃. Since

||(p̃ ∨ p̃∗) − (q̃ ∨ p̃∗)||∞ ≤ ||p̃ − q̃||∞ − 1, ||(p̃ ∧ p̃∗) − (q̃ ∧ p̃∗)||∞ ≤ 1,

we see again by the induction hypothesis that

g̃(p̃ ∨ p̃∗) + g̃(q̃ ∨ p̃∗) ≥ g̃((p̃ ∨ p̃∗) ∨ (q̃ ∨ p̃∗)) + g̃((p̃ ∨ p̃∗) ∧ (q̃ ∨ p̃∗))

= g̃(p̃ ∨ q̃) + g̃(p̃∗), (4.5)

g̃(p̃ ∧ p̃∗) + g̃(q̃ ∧ p̃∗) ≥ g̃((p̃ ∧ p̃∗) ∨ (q̃ ∧ p̃∗)) + g̃((p̃ ∧ p̃∗) ∧ (q̃ ∧ p̃∗)).

= g̃(p̃∗) + g̃(p̃ ∧ q̃). (4.6)

All the terms in (4.3)∼(4.6) being finite, addition of these inequalities yields (1.1).

2

Lemma 4.3 Assume g̃(p0, p1, . . . , pn) = g(p1−p0, . . . , pn−p0). Then g̃ is L-convex

if and only if g satisfies PR-SBM (2.7).

(Proof) The second condition (1.3) for L-convexity of g̃ is automatically met. The

submodularity (1.1) of g̃ is translated to a condition on g:

g(p − p01) + g(q − q01) ≥ g((p ∨ q) − (p0 ∨ q0)1) + g((p ∧ q) − (p0 ∧ q0)1).

We may assume p0 ≤ q0. Change the variables: p − p01 → p, q − q01 → q, and

put α = q0 − p0. 2

This implies the following relationship between dom g̃ and dom g.

Lemma 4.4 Assume g̃(p0, p1, . . . , pn) = g(p1 − p0, . . . , pn − p0). Then dom g̃ sat-

isfies (4.1) if and only if dom g satisfies DOM (2.4). 2

12



Lemma 4.5 Assume g̃(p0, p1, . . . , pn) = g(p1 − p0, . . . , pn − p0). Then g̃ satisfies

the local submodularity (4.2) if and only if g satisfies L-SBM (2.5) and L-PR-SBM

(2.6).

(Proof) The local submodularity (4.2) of g̃ can also be expressed as

g̃(p̃ + χX̃) + g̃(p̃ + χỸ ) ≥ g̃(p̃ + χX̃∪Ỹ ) + g̃(p̃ + χX̃∩Ỹ ), X̃, Ỹ ⊆ Ṽ , p̃ ∈ ZṼ , (4.7)

where Ṽ = {0, 1, . . . , n}. The assertion follows from the relation

g̃(p̃ + χX̃) =

 g(p − p01 + χX) (0 6∈ X̃)

g(p − (p0 + 1)1 + χX) (0 ∈ X̃)

where X = X̃ \{0}, and from a change of variable p−p01 → p or p−(p0+1)1 → p.

2

Lemma 4.6 SBM (2.1) & UPR-SBM (2.8) =⇒ MPC (2.2).

(Proof) Define a sequence of pairs of points (p(k), q(k)) (k = 0, 1, · · ·) as follows:

p(0) = p ∨ q, q(0) = p ∧ q;

p(k+1) = (p(k) − 1) ∨ q(k), q(k+1) = p(k) ∧ (q(k) + 1) (k = 0, 1, · · ·).

Note that p(k) + q(k) = p + q for all k = 0, 1, · · ·, and that ||p(k) − q(k)||∞ ≤ 1 if

k ≥ ||p − q||∞/2. For N satisfying N ≥ ||p − q||∞/2 we have

p(N) ∨ q(N) =
⌈
p + q

2

⌉
, p(N) ∧ q(N) =

⌊
p + q

2

⌋
.

Then MPC (2.2) follows from

g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) = g(p(0)) + g(q(0)),

g(p(k)) + g(q(k)) ≥ g((p(k) − 1) ∨ q(k)) + g(p(k) ∧ (q(k) + 1))

= g(p(k+1)) + g(q(k+1)) (k = 0, 1, · · · , N − 1),

g(p(N)) + g(q(N)) ≥ g(p(N) ∨ q(N)) + g(p(N) ∧ q(N))

= g
(⌈

p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
.

2

Lemma 4.7 IC (integral convexity) & SBM (2.1) =⇒ MPC (2.2).
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(Proof) This implication is essentially proved by Favati–Tardella [4]. We describe

the proof for completeness. Since g is submodular, the piecewise-convex extension

g is given by the Lovász extension in each unit hypercube. Therefore,

2g
(

p + q

2

)
= g

(⌈
p + q

2

⌉)
+ g

(⌊
p + q

2

⌋)
.

The convexity of g, on the other hand, implies

g(p) + g(q) = g(p) + g(q) ≥ 2g
(

p + q

2

)
.

A combination of these two yields MPC (2.2). 2

Lemma 4.8 DOM (2.4) follows from the condition:

p, q ∈ dom g =⇒
⌈
p + q

2

⌉
,

⌊
p + q

2

⌋
∈ dom g. (4.8)

(Proof) For any p, q ∈ dom g define a sequence (q(0), q(1), · · ·) of points in Zn as

follows:

q(0) = q; q(k+1) =

⌊
p + q(k)

2

⌋
(k = 0, 1, · · ·).

Here, note that q(k) ∈ dom g (k = 0, 1, · · ·). We see that

(i) if pi − q
(k)
i = 0 or 1, then q

(k+1)
i = q

(k)
i ;

(ii) if pi − q
(k)
i ≥ 2, then pi > q

(k+1)
i = q

(k)
i + b1

2
(pi − q

(k)
i )c ≥ q

(k)
i + 1;

(iii) if pi − q
(k)
i ≤ −1, then pi ≤ q

(k+1)
i = q

(k)
i − d1

2
(q

(k)
i − pi)e ≤ q

(k)
i − 1.

It follows that there exists some positive integer N such that q(k) = q(N) for any

integer k ≥ N . Because of (i)∼(iii) such q(N) is equal to (p−1)∨ (p∧ q) and hence

we have (p − 1) ∨ (p ∧ q) ∈ dom g. Replacing p by (p − 1) ∨ (p ∧ q) and repeating

the above argument, we also have (p − 2 · 1) ∨ (p ∧ q) ∈ dom g. Repeating this

argument (or more rigorously by induction), we have (p − α1) ∨ (p ∧ q) ∈ dom g

for 0 ≤ α ∈ Z. In particular, we have p ∧ q ∈ dom g. By the symmetry we also

have (p ∨ q) ∧ (q + α1) ∈ dom g for 0 ≤ α ∈ Z and, in particular, p ∨ q ∈ dom g.

Now, replacing p by p ∨ q in the above argument from the beginning, we

have (p − α1) ∨ q ∈ dom g for 0 ≤ α ∈ Z. By the symmetry we also have

p ∧ (q + α1) ∈ dom g for 0 ≤ α ∈ Z. 2

Lemma 4.9 MPC (2.2) =⇒ L-MPC (2.3) & DOM (2.4).

(Proof) Obviously, MPC (2.2) =⇒ L-MPC (2.3). MPC (2.2) implies (4.8), which

in turn implies DOM (2.4) by Lemma 4.8. 2
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Lemma 4.10 L-MPC (2.3) =⇒ L-SBM (2.5) & L-PR-SBM (2.6).

(Proof) L-MPC (2.3) for p = p̂ + χX and q = p̂ + χY implies (2.5), since⌈
p + q

2

⌉
= p̂ + χX∪Y ,

⌊
p + q

2

⌋
= p̂ + χX∩Y ,

and ||p − q||∞ ≤ 1, whereas L-MPC (2.3) for p = p̂ + χX + 1 and q = p̂ + χY

implies (2.6), since⌈
p + q

2

⌉
= p̂ + χX∩Y + 1,

⌊
p + q

2

⌋
= p̂ + χX∪Y

and ||p − q||∞ ≤ 2. 2
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